Introduction to lattice theory Part II - Suggestions of exercices.

Question 1. Let N_5 be the lattice depicted below.

- 1. Does N_5 satisfies the distributivity equation $x \lor (y \land z) = (x \lor y) \land (x \lor z)$?
- 2. List all the sublattices of N_5 .
- 3. * Let $n \ge 0$. Prove that there is no onto homomorphism from the $\mathcal{P}(\{1,\ldots,n\})$ to N_5 .

Question 2. Let (L, \wedge, \vee) and (L', \wedge, \vee) be two lattices and $f: L \to L'$. Prove that the following conditions are equivalent.

- (i) f is a lattice isomorphism.
- (ii) f is an order-isomorphism.

Question 3. Let (L, \wedge, \vee) and (L', \wedge, \vee) be two lattices and $f: L \to L'$.

- 1. Prove that if f is a lattice-homomorphism then it is order-preserving
- 2. Prove that if f is order-preserving, it needs not be a lattice-homomorphism.

Question 4. Let $\mathcal{F} \subseteq \mathcal{P}(X)$ a family of subsets of X such that $X \in \mathcal{F}$ and $\bigcap \mathcal{F}' \in \mathcal{F}$ for every nonempty $\mathcal{F}' \subseteq \mathcal{F}$. Prove that \mathcal{F} is a complete lattice in which \bigwedge coincides with \bigcap and for every $\mathcal{F}' \subseteq \mathcal{F}$, we have

$$\bigvee \mathcal{F}' = \bigcap \{ B \in \mathcal{F} \mid \bigcup \mathcal{F}' \subseteq B \}.$$

Question 5. Deduce from the previous exercise that for any lattice L, the poset of its sublattices with the empty set adjoined is a complete lattice.

Question 6. Let (X, \leq) be a poset. Show that the maps $\alpha, \gamma: 2^X \to 2^X$ defined as

$$\alpha(A) = \{ y \in X \mid \forall a \in A \ a \le y \}$$

$$\gamma(A) = \{ y \in X \mid \forall a \in A \ y \le a \}$$

are such that $(2^X, \subseteq) \xleftarrow{\gamma}{\alpha} (2^X, \subseteq^{\partial})$ is a Galois connection.

Question 7. Let C be a closure operator on a poset (X, \leq) . Show that an element $x \in X$ is closed if and only if C(x) = x.

Question 8. Let C be a closure operator on a poset (X, \leq) and Γ the set of closed elements of C. Define $\alpha \colon X \to \Gamma$ and $\gamma \colon \Gamma \to X$ by

$$\alpha(x) = C(x)$$
$$\gamma(y) = y.$$

Show that $(X, \leq) \xrightarrow{\gamma} (\Gamma, \leq)$ is a Galois connection.

Question 9. Assume that $(X, \leq) \xrightarrow{\gamma} (Y, \leq)$ is a Galois connection. Show that if $S \subseteq P$ is such that $\bigvee S$ exists then $\bigvee \alpha(S)$ exists and $\alpha(\bigvee S) = \bigvee \alpha(S)$.