Introduction to Lattice Theory

Bruno Teheux June 17, 2024

DMATH

Elementary order and lattice theory for Computer Science.

Order

X, Y, Z... will be sets

Orders are meant to capture the "less or equal" relations.

Definition. A binary relation \leq on X is an *order* if for all x, y, z

$$\cdot x \le x$$
(reflexivity) $\cdot (x \le y \text{ and } y \le x) \text{ implies } x = y$ (antisymmetry) $\cdot (x \le y \text{ and } y \le z) \text{ implies } x \le z$ (transitivity)

We call (X, \leq) a partially ordered set or poset.

We supercharge \leq .

Example. (\mathbb{N}, \leq) where \leq is the natural order is a poset

We supercharge \leq .

Example. (\mathbb{N}, \leq) where \leq is the natural order is a poset

Example. If $X \subseteq \mathbb{N}$ then (X, \leq) is a poset

Example. (\mathbb{R}, \leq) is a poset

We supercharge \leq .

Example. (\mathbb{N}, \leq) where \leq is the natural order is a poset

Example. If $X \subseteq \mathbb{N}$ then (X, \leq) is a poset

Example. (\mathbb{R}, \leq) is a poset

How to define \leq on \mathbb{N} and \mathbb{R} is an interesting question.

These are examples of *total orders*, that is, that satisfies Chains on linean orders $\forall x, y \ (x \le y \text{ or } y \le x)$

Example. (\mathbb{N}, \leq) where $a \leq b$ if a divides b is a poset

S(x)**Example.** $(2^X, \leq)$ where 2^X is the powerset of X and \leq is the inclusion relation is a poset.

Definition. A *predicate* on X is a mapping $P: X \rightarrow \{\text{True}, \text{False}\}$. **Example.** $x \ge 2$ is a predicate sur \mathbb{N}

Example. Let $\mathbb{P}(X)$ the set of predicates on X. (\mathbb{P} , \Longrightarrow) is a poset, where

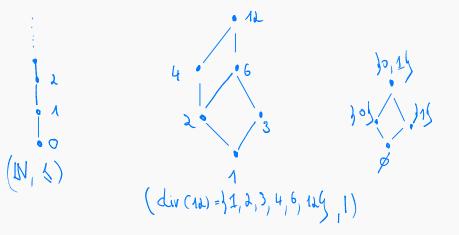
 $P \implies Q$ if $\{x \in X \mid P(X)\} \subseteq \{x \in X \mid Q(X)\}$

A (finite) poset (X, \leq) can be represented by a diagram depicted according to the following rules:

- 1. Elements $x \in X$ are represented by dots.
- If x ≤ y then x is represented below y and both are connected by a straight line unless ...
- 2 bis. the relation $x \le y$ can de deduced from $x \le z$ and $z \le y$ for some z.
 - It is called the *Hasse diagram* of (X, \leq)

Hasse diagrams: examples

Draw the Hasse diagrams of (\mathbb{N}, \leq) , the divisors of 12 ordered by divisibility and the powerset $2^{\{0,1\}}$.



Definition. The *(order)* dual of (X, \leq) is the poset (X, \leq^{∂}) defined as

$$x \leq^{\partial} y$$
 if $y \leq x$.

How to obtain the Hasse diagram of (X, \leq^{∂}) from that of (X, \leq) ?

Definition. We write x < y if $(x \le y \text{ and } y \le x)$. Such a < is called a *strict partial order*. There are different natural classes of mappings betwen posets.

Definition. A map $f: (X, \leq) \rightarrow (Y, \leq)$ is

• order-preserving if $x \le y \implies f(x) \le f(y)$ for all x, y

There are different natural classes of mappings betwen posets.

Definition. A map $f: (X, \leq) \rightarrow (Y, \leq)$ is

- order-preserving if $x \le y \implies f(x) \le f(y)$ for all x, y
- an order-embedding if $x \le y \iff f(x) \le f(y)$ for all x, y

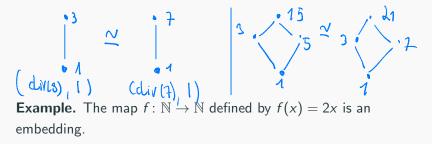
There are different natural classes of mappings betwen posets.

Definition. A map $f: (X, \leq) \rightarrow (Y, \leq)$ is

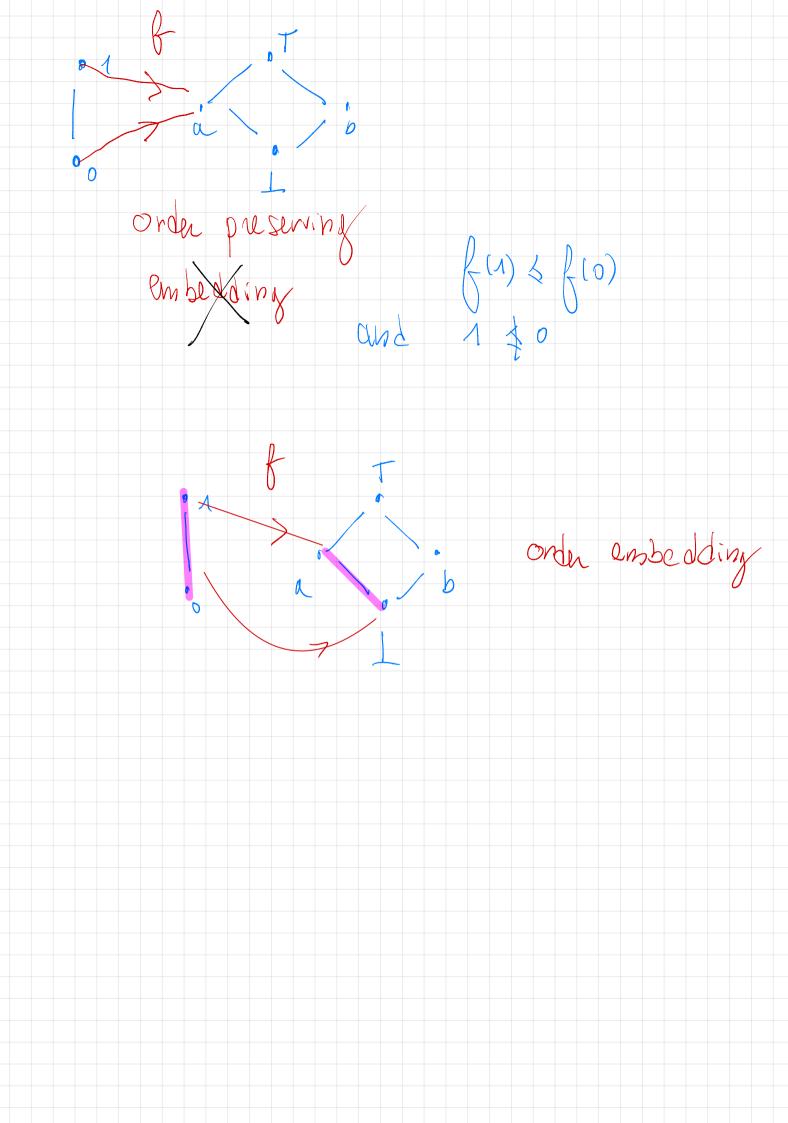
- order-preserving if $x \le y \implies f(x) \le f(y)$ for all x, y
- an *order-embedding* if $x \le y \iff f(x) \le f(y)$ for all x, y
- an order-isomorphism if f is an onto order-embedding.

Isomorphic posets can't be distinguished from the perspective of order theory.

Example. Give two integers whose divisors posets are isomorphic



Example. The powerset $(2^X, \subseteq)$ and the predicate poset $(\mathbf{A}, \Longrightarrow)$ are isomorphic.

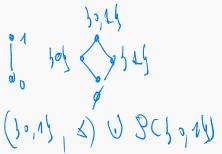


Poset consctructions: disjoint union

Definition. The *disjoint union* $(X, \leq) \cup (Y, \leq)$ is the poset defined on $X \cup Y$ by

 $s \leq t$ if $(s, t \in X \text{ and } s \leq t)$ or $(s, t \in Y \text{ and } s \leq t)$

Example.



Poset constructions: linear sum

Definition The *linear sum* $(X, \leq) \oplus (Y, \leq)$ is the poset defined on Not symmetric $X \cup Y$ by $s \leq t$ if $(s, t \in X \text{ and } s \leq t)$ or $(s, t \in Y \text{ and } s \leq t)$ or $(s \in X \text{ and } t \in Y)$. 6 Example. 6 0

Given (X, \leq) and (Y, \leq) how to define a poset on $X \times Y$?

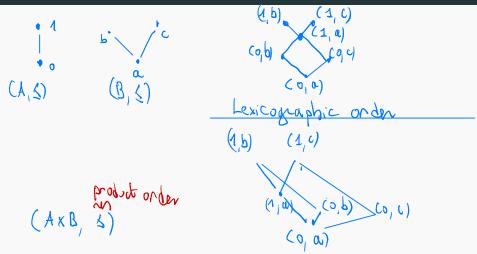
Definition. The *pointwise order* on $X \times Y$ is defined by

$$(x,y) \leq (x',y')$$
 if $(x \leq x' \text{ and } y \leq y')$

The *lexicographic order* on $X \times Y$ is defined by

$$(x,y) \leq (x',y')$$
 if $(x < x' \text{ or } (x = x' \text{ and } y \leq y')).$

Exercise. Check that the lexicographic and pointiwse orders are orders.



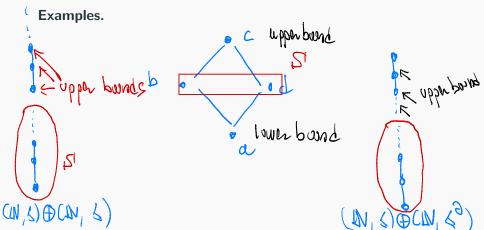
Exercise. Prove that the lexicographic order of total orders is a total order.

Bounds

Upper and lower bounds

Definition. Let (X, \leq) be a poset and $S \cup \{u, \ell\} \subseteq X$.

1. *u* is an *upper bound* of *S* if $s \le u$ for all $s \in S$ 2. ℓ is a *lower bound* of *S* if $\ell < s$ for all $s \in S$



Best bounds

One Bound to rule them all, One Bound to find them.

Definition. Let (X, \leq) be a poset and $S \cup \{u, \ell\} \subseteq X$.

- 1. *u* is a *least upper bound (lub)* of *S* if *u* is an upper bound of *S* and $u \le u'$ for every upper bound *u'* of *S*.
- ℓ is a greatest lower bound (glb) of S if ℓ is a lower bound and ℓ' ≤ ℓ for every lower bound ℓ' of S.

Lub and glb are the best bounds.

Definition. If $S \subseteq X$ has a lup (glb, resp.) α and $\alpha \in S$, we say that S has a *greatest element* (*smallest element*, resp.) α .

Lemma. If u and u' are two lub of S in (X, \leq) then u = u'. *Proof.* We have $u \leq u'$ and $u' \leq u$.

Unicity also holds for glb.

Definition. A *top element* \top *of* (X, \leq) is a lup of (X, \leq) .

A *bottom element* \perp *of* (X, \leq) is a glb of (X, \leq).

Sometimes top and bottom elements are denoted by 1 and 0, respectively.

Examples.

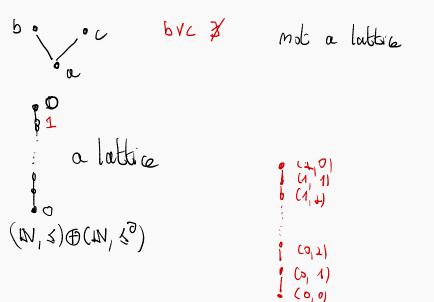
Powersets have top and bottom elements.

 (\mathbb{Z},\leq) has neither a greatest element, nor a least element.

Definition. A *lattice* is a poset in which every pair $\{x, y\}$ has a lub and a glb.

We denote by $x \wedge y$ and $x \vee y$ the glb and lub of $\{x, y\}$.

A lattice is *bounded* if it has a bottom and a top element.



Lattices as algebraic structures

A lattice (L, \leq) can be seen as an algebraic structure (L, \wedge, \vee) equipped with two binary operations $\wedge, \vee, : L \times L \rightarrow L$,

It satisfies the following equations:

$$x \wedge y = y \wedge x \quad (symmetry) \quad (1)$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \quad (associativity) \quad (2)$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \quad (distributivity) \quad (3)$$

$$x \wedge x = x \quad (idempotence) \quad (4)$$

$$x \vee (x \wedge y) = x \quad (absorption) \quad (5)$$

and their dual.

Lattices as algebraic structures

A bounded lattice (L, \leq) can be seen as an algebraic structure $(L, \land, \lor_0, 1)$ equipped with two binary operations

 $\land,\lor,:L\times L\to L,$

and constants 0 and 1.

It satisfies the following equations:

$$x \wedge y = y \wedge x \quad (symmetry) \quad (1)$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \quad (associativity) \quad (2)$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \quad (distributivity) \quad (3)$$

$$x \wedge x = x \quad (idempotence) \quad (4)$$

$$x \vee (x \wedge y) = x \quad (absorption) \quad (5)$$

$$x \wedge 1 = \mathcal{G}, \quad x \vee 0 = \mathcal{G}\mathcal{L}$$
and their dual.

Lattices as posets \equiv lattices as algebra

Proposition. In a lattice (L, \leq) , we can recover \leq from \land or \lor :

$$a \leq b \iff a \wedge b = a \iff a \vee b = b$$

Proposition. If (L, \wedge, \vee) satisfies equations (1) - (5) then the relation \leq defined as

$$a \leq b$$
 if $a \wedge b = a$

is a lattice order. The glb and lub operations in (L, \leq) coincide with \land and \lor , respectively.

We use the order-theoretic and algebraic perspectives interchangeably.

The disjoint union of lattices

The linear sum of lattices

The linear sum of lattices is a lattice

The lexicographic order on product of lattices

The linear sum of lattices is a lattice

The lexicographic order on product of lattices might not be a lattice (see exercises)

The pointwise order on product of lattices

The linear sum of lattices is a lattice

The lexicographic order on product of lattices might not be a lattice (see exercises)

The pointwise order on product of lattices *is* a lattice. Operations \lor and \land are computed pointwise.

Examples

Definition. A subset S of a lattice (L, \land, \lor) is called a *sublattice* if $x \land y$ and $x \lor y$ belongs to S for every $x, y \in S$.

Sublattices are lattices. They inherit their order and operations from their parent lattice.

Sublattice: Examples

Definition. A map $f: (L, \land, \lor) \rightarrow (L', \land, \lor)$ is a *lattice* homomorphism if for every $a, b \in L$

$$f(a \lor b) = f(a) \lor f(b)$$
 and $f(a \land b) = f(a) \land f(b)$.

A bijective lattice homomorphism is called a *lattice isomorphism*.

Examples.

Definition. A lattice (L, \leq) is *complete* if every subset S of L has a lup and a glb, denoted by

$$\bigvee S$$
 and $\bigwedge S$,

and called the supremum and infimum of S, respectively.

A complete lattice (L, \leq) has all joins and all meets. In particular,

$$\bigwedge S = \bigvee \varnothing \quad \text{and} \quad \bigvee S = \bigwedge \varnothing,$$

which are bottom and top element of (L, \leq)

Examples

Powerset lattices are complete.

Lemma. A lattice (L, \leq) is complete if and only if it has a top element \top and every nonempty subset S of L a glb.

Proof. \Leftarrow We have $\bigvee \varnothing = \top$ and if $T \subseteq L$ is nonempty

$$\bigvee T = \bigwedge \{\ell \in L \mid \forall t \in T \ t \leq \ell\}$$

Fixpoints

In general, a fix point of $F: X \to X$ is a $x \in X$ such that

F(x) = x.

Fixpoints are commonly used in CS in the context of posets.

We give a few existence and computation results for fixpoints.

$$F: (X, \leq) \to (X, \leq)$$

Notation.

$$fix(F) := \{x \in X \mid F(x) = x\}$$

$$post(F) := \{x \in X \mid x \le F(x)\}$$

$$pre(F) := \{x \in X \mid F(x) \le x\}$$

These sets might be empty or nonemptu, bounded or unbounded...

If $\bigvee \operatorname{fix}(F)$ exists and belongs to $\operatorname{fix}(F)$, it is denoted by $\nu(F)$.

If $\bigwedge \operatorname{fix}(F)$ exists and belongs to $\operatorname{fix}(F)$, it is denoted by $\mu(F)$.

Theorem (Knaster - Tarski) Let (L, \leq) be a complete lattice and $F: (L, \leq) \rightarrow (L, \leq)$ be an order-preserving map.

- 1. F has a least fixpoint $\mu(F)$ and a greatest fixpoint $\nu(F)$.
- 2. We have

$$\mu(F) = \bigwedge \operatorname{pre}(F),$$
$$\nu(F) = \bigvee \operatorname{post}(F).$$

Proof.[...]

This theorem does no help to compute or approximate fixpoints.

CPOs are the general environnement to state fixpoint theorems. **Definition.** A subset D of (X, \leq) is *directed* if every pair of elements of D has an upper bound in D.

Chains are examples of directed set.

Definition. A poset (X, \leq) is a *complete partial order (CPO)* if

1. it has a bottom element \perp ,

2. $\bigvee D$ exists for every directed $D \subseteq X$.

Complete lattices are instances of CPO.

Theorem (\$).

 (P, \leq) is a CPO if and only if each chain has a lub (in P).

Definition. A map $f: (X, \leq) \rightarrow (Y, \leq)$ between CPOs is *continuous* if for every directed $D \subseteq X$,

$$f(D)$$
 is directed and $f(\bigvee D) = \bigvee f(D)$.

Continuous implies order-preserving but the converse is false.

Definition. (X, \leq) satisfies the *ascending chain condition* (AAC) if every increasing sequence of P is eventually constant.

Lemma If $(X, \leq) \models$ AAC, then any order-preserving $f: (X, \leq) \rightarrow (Y, \leq)$ is continuous.

Theorem. Let $F : (X, \leq) \to (X, \leq)$ be an order-preserving map on a CPO and set

$$\alpha := \bigvee \{ F_n(\bot) \mid n \ge 0 \}$$

- 1. If α is a fixpoint then it is the least fixpoint.
- 2. If F is continuous then it is a least fixpoint $\mu(F)$ and $\mu(F) = \alpha$.