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Goal

Elementary order and lattice theory for Computer Science.



Order



Poset

X, Y, Z. . . will be sets

Orders are meant to capture the “less or equal” relations.

Definition. A binary relation  on X is an order if for all x , y , z

· x  x (reflexivity)

· (x  y and y  x) implies x = y (antisymmetry)

· (x  y and y  z) implies x  z (transitivity)

We call (X ,) a partially ordered set or poset.



Examples

We supercharge .

Example. (N,) where  is the natural order is a poset

Example. If X ✓ N then (X ,) is a poset

Example. (R,) is a poset

How to define  on N and R is an interesting question.

These are examples of total orders, that is, that satisfies

8x , y (x  y or y  x)

Example. (N,) where a  b if a divides b is a poset
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Examples: natural orders

Example. (2X ,) where 2X is the powerset of X and  is the

inclusion relation is a poset.

Definition. A predicate on X is a mapping P : X ! {True,False}.

Example. x � 2 is a predicate sur N

Example. Let P(X ) the set of predicates on X . (P, =) ) is a

poset, where

P =) Q if {x 2 X | P(X )} ✓ {x 2 X | Q(X )}

S(x)



Hasse diagrams

A (finite) poset (X ,) can be represented by a diagram depicted

according to the following rules:

1. Elements x 2 X are represented by dots.

2. If x  y then x is represented below y and both are connected

by a straight line unless . . .

2 bis. the relation x  y can de deduced from x  z and z  y for

some z .

It is called the Hasse diagram of (X ,)



Hasse diagrams: examples

Draw the Hasse diagrams of (N,), the divisors of 12 ordered by

divisibility and the powerset 2{0,1}.
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Order dual and strict order

Definition. The (order) dual of (X ,) is the poset (X ,@)

defined as

x @ y if y  x .

How to obtain the Hasse diagram of (X ,@) from that of (X ,)?

Definition. We write x < y if (x  y and y 6 x).

Such a < is called a strict partial order. F



Mappings

There are di↵erent natural classes of mappings betwen posets.

Definition. A map f : (X ,) ! (Y ,) is

• order-preserving if x  y =) f (x)  f (y) for all x , y

• an order-embedding if x  y () f (x)  f (y) for all x , y

• an order-isomorphism if f is an onto order-embedding.

Isomorphic posets can’t be distinguished from the perspective of

order theory.
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Mappings: example

Example. Give two integers whose divisors posets are isomorphic

Example. The map f : N ! N defined by f (x) = 2x is an

embedding.

Example. The powerset (2X ,✓) and the predicate poset

(B, =) ) are isomorphic.
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Poset consctructions: disjoint union

Definition. The disjoint union (X ,) [· (Y ,) is the poset

defined on X [· Y by

s  t if (s, t 2 X and s  t) or (s, t 2 Y and s  t)

Example.

30
, 14

i gob
⑨

(60 . 13
, 1)V9(30 ,

1})



Poset constructions: linear sum

Definition The linear sum (X ,)� (Y ,) is the poset defined on

X [· Y by

s  t if (s, t 2 X and s  t)

or (s, t 2 Y and s  t)

or (s 2 X and t 2 Y ).

Example.
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Poset consctructions: Cartesian product

Given (X ,) and (Y ,) how to define a poset on X ⇥ Y ?

Definition. The pointwise order on X ⇥ Y is defined by

(x , y)  (x 0, y 0) if (x  x 0 and y  y 0)

The lexicographic order on X ⇥ Y is defined by

(x , y)  (x 0, y 0) if
�
x < x 0 or (x = x 0 and y  y 0)

�
.

Exercise. Check that the lexicographic and pointiwse orders are

orders.

(10,y(X , yc- Y)



Examples.

Exercise. Prove that the lexicographic order of total orders is a

total order.
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Bounds



Upper and lower bounds

Definition. Let (X ,) be a poset and S [ {u, `} ✓ X .

1. u is an upper bound of S if s  u for all s 2 S

2. ` is a lower bound of S if `  s for all s 2 S
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Best bounds

One Bound to rule them all, One Bound to find them.

Definition. Let (X ,) be a poset and S [ {u, `} ✓ X .

1. u is a least upper bound (lub) of S if u is an upper bound of

S and u  u0 for every upper bound u0 of S .

2. ` is a greatest lower bound (glb) of S if ` is a lower bound

and `0  ` for every lower bound `0 of S .

Lub and glb are the best bounds.

Definition. If S ✓ X has a lup (glb, resp.) ↵ and ↵ 2 S , we say

that S has a greatest element (smallest element, resp.) ↵.



Examples



Best bounds are unique

Lemma. If u and u0 are two lub of S in (X ,) then u = u0.

Proof. We have u  u0 and u0  u.

Unicity also holds for glb.



Bottom and top

Definition. A top element > of (X ,) is a lup of (X ,).

A bottom element ? of (X ,) is a glb of (X ,).

Sometimes top and bottom elements are denoted by 1 and 0,

respectively.

Examples.

Powersets have top and bottom elements.

(Z,) has neither a greatest element, nor a least element.



Lattices

Definition. A lattice is a poset in which every pair {x , y} has a

lub and a glb.

We denote by x ^ y and x _ y the glb and lub of {x , y}.

A lattice is bounded if it has a bottom and a top element.



Examples
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Lattices as algebraic structures

A

bounded

lattice (L,) can be seen as an algebraic structure

(L,^,_

0, 1

) equipped with two binary operations

^,_, : L⇥ L ! L,

and constants 0 and 1.

It satisfies the following equations:

x ^ y = y ^ x (symmetry) (1)

x ^ (y ^ z) = (x ^ y) ^ z (associativity) (2)

x ^ (y _ z) = (x ^ y) _ (x ^ z) (distributivity) (3)

x ^ x = x (idempotence) (4)

x _ (x ^ y) = x (absorption) (5)

x ^ 1 = 1, x _ 0 = 0

and their dual.
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Lattices as posets ⌘ lattices as algebra

Proposition. In a lattice (L,), we can recover  from ^ or _:

a  b () a ^ b = a () a _ b = b

Proposition. If (L,^,_) satisfies equations (1) - (5) then the

relation  defined as

a  b if a ^ b = a

is a lattice order. The glb and lub operations in (L,) coincide

with ^ and _, respectively.

We use the order-theoretic and algebraic perspectives

interchangeably.



Lattices and poset constructions

The disjoint union of lattices

is not a lattice

The linear sum of lattices is a lattice

The lexicographic order on product of lattices might not be a

lattice (see exercises)

The pointwise order on product of lattices is a lattice. Operations

_ and ^ are computed pointwise.
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Lattice constructions: sublattices

Definition. A subset S of a lattice (L,^,_) is called a sublattice if

x ^ y and x _ y belongs to S for every x , y 2 S .

Sublattices are lattices. They inherit their order and operations

from their parent lattice.



Sublattice: Examples



Suitable maps between lattices

Definition. A map f : (L,^,_) ! (L0,^,_) is a lattice

homomorphism if for every a, b 2 L

f (a _ b) = f (a) _ f (b) and f (a ^ b) = f (a) ^ f (b).

A bijective lattice homomorphism is called a lattice isomorphism.



Examples.



Complete lattices: the best case scenario

Definition. A lattice (L,) is complete if every subset S of L has

a lup and a glb, denoted by

_
S and

^
S ,

and called the supremum and infimum of S , respectively.

A complete lattice (L,) has all joins and all meets. In particular,

^
S =

_
? and

_
S =

^
?,

which are bottom and top element of (L,)



Examples

Powerset lattices are complete.



Completeness can be summarized

Lemma. A lattice (L,) is complete if and only if it has a top

element > and every nonempty subset S of L a glb.

Proof. ( We have
W
? = > and if T ✓ L is nonempty

_
T =

^
{` 2 L | 8t 2 T t  `}



Fixpoints



Fixpoints

In general, a fix point of F : X ! X is a x 2 X such that

F (x) = x .

Fixpoints are commonly used in CS in the context of posets.

We give a few existence and computation results for fixpoints.



Fixpoints in posets

F : (X ,) ! (X ,)

Notation.

fix(F ) := {x 2 X | F (x) = x}
post(F ) := {x 2 X | x  F (x)}
pre(F ) := {x 2 X | F (x)  x}

These sets might be empty or nonemptu, bounded or

unbounded. . .

If
W

fix(F ) exists and belongs to fix(F ), it is denoted by ⌫(F ).

If
V

fix(F ) exists and belongs to fix(F ), it is denoted by µ(F ).



Fixpoints in Complete Lattices

Theorem (Knaster - Tarski) Let (L,) be a complete lattice and

F : (L,) ! (L,) be an order-preserving map.

1. F has a least fixpoint µ(F ) and a greatest fixpoint ⌫(F ).

2. We have

µ(F ) =
^

pre(F ),

⌫(F ) =
_

post(F ).

Proof.[...]

This theorem does no help to compute or approximate fixpoints.



Complete Partial Orders (CPOs)

CPOs are the general environnement to state fixpoint theorems.

Definition. A subset D of (X ,) is directed if every pair of

elements of D has an upper bound in D.

Chains are examples of directed set.

Definition. A poset (X ,) is a complete partial order (CPO) if

1. it has a bottom element ?,

2.
W
D exists for every directed D ✓ X .

Complete lattices are instances of CPO.



Recognizing CPOs

Theorem ($).

(P ,) is a CPO if and only if each chain has a lub (in P).



Continuous transformations

Definition. A map f : (X ,) ! (Y ,) between CPOs is

continuous if for every directed D ✓ X ,

f (D) is directed and f (
_

D) =
_

f (D).

Continuous implies order-preserving but the converse is false.

Definition. (X ,) satisfies the ascending chain condition (AAC)

if every increasing sequence of P is eventually constant.

Lemma If (X ,) |= AAC, then any order-preserving

f : (X ,) ! (Y ,) is continuous.



Next Fixpoint Theorem

Theorem. Let F : (X ,) ! (X ,) be an order-preserving map on

a CPO and set

↵ :=
_

{Fn(?) | n � 0}

1. If ↵ is a fixpoint then it is the least fixpoint.

2. If F is continuous then it is a least fixpoint µ(F ) and

µ(F ) = ↵.


