SHT

Introduction to Constraint Programming

Manuel Combarro Simén X

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

« BUIAL

UNIVERSITY OF
. LUXEMBOURG

2 Agenda

Agenda

1. Constraint satisfaction problem

2. Minizinc

3. Solving algorithm

4. Global constraint

5. Real problem

3 Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Triplet < X,D,C > Example

< {x, v}, {{o,1,2}x, {2,3,4}y},{x =y,x>1)>
X:Set of variables

D: Domains of variables
Variables: {x,y}
C:Set of constraints
Domain: x:{0,1,2},y:{2,3,4}

Constraints: x =y, x > 1

4 Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Assignment is a function asn: X —» Z Example

Example:
Variables: {x,y}

Domain: x:{0,1,2},y:{2,3,4}

e asn:{x - 0,y - 0}
e asn:{x - 2,y - 4}

Constraints:x zy, x > 1
A solution is an assigment that satisfies all the constraints

asn:{x - 2,y —» 4} satisfiesx z y, x > 1

A problem can have several solutions, when you want to find the
best solution based in one parameter or objective we said it is an

optimization problem.

5 Solvers

MiniZinc: Basic structure

Is modeling language to specify a CSP. https://www.minizinc.org/

Variables: {x,y} var 0..2: X;

: var {2,3,4}: vy;
Domain: x:{0,1,2}, y:{2,3,4} ‘ constraint x != y;%arithmetic operators, {>,>=,=<,<,!=,=}
Constraints: x #y, x > 1 constraint x > 1;

solve satisfy;

var 0..2: X;

RN

variable domain name

|

var {2,3,4}: vy;

https://www.minizinc.org/

6 Solvers

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?

This is a solution This is not a solution

7 Solvers

MiniZinc: 3-towers model

Model: Variables, Domains, Constraints

Variables: {T;,T,, T3}
Domain: T;:{0,1,2},T,:{0,1,2}, T5: {0,1,2}. Domain represents the column

Constraints: Ty #T,, Ty #T3, T, # T3 Running 3_towers.men
var 0..2: T1;
var 0..2: T2, nir
var 0..2: T3;)
constraint Tl !'= T2; nla
constraint Tl !'= T3; non
constraint T2 !'= T3; DI

solve satisfty; me%

8 Solvers

MiniZinc: N-queens

Queens -> Row, Column, Diagonal Exercise:

N -> Parameter not fixed 1. Complete with the missing constraints.

2. lIs it possible to get a solution with n=37

3. How many queens can you solve in less
than 5 seconds?

int: n=@;
arrayl[l..n] of var 1..n: queens;

constraint forall(i in 1..n, j in i+l..n)
(queens[il+i != queens[j]+] o Gonerses
/\ queens[i]-i != queens[jl-j); conjunction of

constraints /\

solve satisfty;

9 Solvers

Solving algorithm

Naive algorithm: Enumerate all possible combination of values

Variables: {x,y}
Domain: x:{0,1,2},y:{2,3}

We can get all the possible combinations
with the search tree

Constraints: x =y, x > 1

x=0y=2
x=0,y=3
x=1y=2
x=1y=3
xX=2,y=2

x=2,y=3

10 Solvers

Solving algorithm

CP solvers perform an inference step, called propagation, in each node

* Given the domains and one constraint, can we remove values from the domains?

Variables: {x,y}
X #Y:

Domain: x:{0,1,2},y:{2,3} :{0,1,2},y: {2,3)
Constraints:x #zy, x > 1 /

x > 1:
x: {01, 2}, y:{2,3}
X #Zy:

x:{2},y:{2,3}

All constraints are satisfied,
search is not necessary.

Solutions:
x=2,y=3

11 Solvers

Solving algorithm

Not always we can find the solutions without searching

Variables:{x,y, z}
Domain: x:{0,1},y:{0,1}, z: {0,1}

Constraints: x =Y,y # Z

A

x #yandy = zdo not produce -
a solution, search x=0

1-x=0givenx zywehavey =1, «—
z:{0,1}

2-y=1g¢giveny = zwe have z = 1

3- Solution {x =0,y =1,z = 0}

12 Solvers

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?
("] L

= ofic. =

13 Solvers

Solving algorithm

The interleaving of propagate and search is called propagate-and-search algorithm.

— solve(< X,D,C >)
D' « propagate(< X,D,C >)
ifvdeD',|d| =1
return {D'} // we found a solution
if3d e D',|d| =0
return { } // there are no solution
{L,R} « split(D")
L return solve(< X,L,C >) U solve(< X,R,C >) // search

14 Solvers

Global constraint

Reasoning locally on constraints is not always the most efficient way to solve the problem
« Global constraints help to reason more globally, find infeasibilities earlier, prune domain

better.

Variables:{x,y, z}
Domain: x:{0,1},y:{0,1}, z: {0,1}

Constraints: x #y,y # Z,Yy # Z

We cannot detect failure when we apply the constraints individually. But with the global
constraint alldif ferent we can.

15 Solvers

Global constraint - alldifferent

alldif ferent(xq, x5, ..., x,) semantically equivalent to { x; # x; for alli # j } but provides a
more efficient propagation algorithm (graph matching).

b
0 Variables:{x,y, z}
y Domain: x:{0,1},y:{0,1}, z: {0,1}
1
Constraints: x #y,y # Z,y # Z
z

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

16

Solvers

Global constraint - alldifferent

alldif ferent(xq, x5, ..., x,) semantically equivalent to { x; # x; for alli # j } but provides a
more efficient propagation algorithm (graph matching).

X

0 Variables:{x,y, z}
y Domain: x:{0,1},y:{0,1}, z: {0,1}
1
Constraints: x #y,y # Z,y # Z
z

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

17 Solvers

Global constraint - alldifferent

alldif ferent(xq, x5, ..., x,) semantically equivalent to { x; # x; for alli # j } but provides a
more efficient propagation algorithm (graph matching).

X

0 Variables:{x,y, z}
y Domain: x:{0,1},y:{0,1}, z: {0,1}
1
Constraints: x #y,y # Z,y # Z
z

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

Solution of alldifferent: Maximum matching covering a set of variables.

Infeasible. The cardinality of maximum matching (2) is smaller than the number of
variables (3)

18 Solvers

Global constraint - alldifferent

Besides detecting infeasibility earlier, can assign values earlier

b
0 Variables:{x,y, z}
y Domain: x:{0,1},y:{0,1},z: {0,1,2}
1
Constraints: x #y,y # Z,y # Z
z
2

z:{0:1,2}

19 Solvers

Global constraint - alldifferent

Exercise: Try alldifferent in N-queens and check the efficiency.

inc lude ‘"alldifferent. mzn'"

int: n=200;
array[l..n] of var 1..n: queens_alldiff;

constraint alldifferent(queens_alldiff);
constraint alldifferent([queens_alldiff[i]+i | i in 1..n]
constraint alldifferent([queens_alldiff[i]l-i | i in 1..n]

j

n
’
’

j

solve satisfy;

20 Real problem

Satellite image selection problem (SIMS)

2014 2021
192 EO 971 EO satellites
satellites

>100 TB of satellite
imagery per day

Satellite images: Planet Labs, Inc.

21 Real problem

Satellite image selection problem (SIMS)

N
v P2
ko
R

3.7\

i
St
S

To cover large areas we need several

images

Mosaic

e N 4
s
ol B £

ot

\—Yﬁ

L
(L
Newi

i

{8
bhenm
\

22 Real problem

Satellite image selection problem (SIMS)

[Fukiage: Shobu
+Kanosu ®

NP-Hard
. Enumeration: 2"

. | Which combination?

S

Jroace

i & = = St e — o 8 S ="
-3 - 12 X N , -1 ¥ -
29 -7 - 19 - 11
—e - 23 -7 =5
- i 29
2 - 1 - 12
. -1 -1
= =

-

23

Real problem

Satellite image selection problem (SIMS)

Remove the area of
images outside AOI

Find all intersections

The cover constraint and
cost can be modeled as the
- classical weighted set cover

:- problem

Universe = Union of intersections (parts)
Images -> Sets with parts and weight = cost

24 Real problem

Satellite image selection problem (SIMS) - Model

Multi-objective problem:
 Cost

* Clouds

« Resolution

* Incidence angle

Single objective

Pareto front

25 Real problem

Satellite image selection problem (SIMS) - Model

Variables: {taken;|i = 1,..n}
Domain: taken;: {false, true}
Constraints: cover

Objectives: cost,resolution, incidence
Cover constraint:

\/ taken; = true, for all u € Universe

I"u€lmg;

constraint forall(u in UNIVERSE) (exists(i in IMAGES) (taken[i] /\ u in images[il]));

26 Real problem

Satellite image selection problem (SIMS) - Model

Cost:

min 2 cost; x taken;
IEImg

var int: total_cost = sum(i in IMAGES) (costs[i] * taken[il);

27 Real problem

Satellite image selection problem (SIMS) - Model

Resolution:

min z min{ R; | u € P;, taken; = true}

Uu€eUniverse

var int: max_resolution = sum(u in UNIVERSE) (min(i in IMAGES where u in

images[i] /\ taken[i]) (resolution[i]));

Incidence angle:

min{ max{ taken; * Inc;| i € Img}}

var int: max_incidence = max(i in IMAGES) (taken[i] % incidence_anglel[il]);

SHT

Parallel Computing and
Optimisation Group

Contact:

Manuel Combarro Simon

Doctoral researcher
manuel.combarrosimon@uni.lu

Pierre Talbot
Research associate
pierre.talbot@uni.lu

Connect with us a @SnT_uni_lu

ﬁ' Interd|SC|pI|na
Securlty Rellablllty

entre for
and Trust

