
1

Manuel Combarro Simón

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

Introduction to Constraint Programming

2

Agenda
Agenda

1. Constraint satisfaction problem

2. Minizinc

3. Solving algorithm

4. Global constraint

5. Real problem

Constraint.org

3

Constraint Satisfaction Problem (CSP)
Constraint Satisfaction Problem

𝑇𝑟𝑖𝑝𝑙𝑒𝑡	 < 𝑋, 𝐷, 𝐶 >

𝑋: 𝑆𝑒𝑡	𝑜𝑓	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝐷:𝐷𝑜𝑚𝑎𝑖𝑛𝑠	𝑜𝑓	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝐶: 𝑆𝑒𝑡	𝑜𝑓	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐸𝑥𝑎𝑚𝑝𝑙𝑒

< 𝑥, 𝑦 , 0,1,2 ! , 2,3,4 " , {𝑥	¹	 𝑦, 𝑥 > 1} >

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1,2 , 𝑦: 2,3,4

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑥 > 1

4

Constraint Satisfaction Problem (CSP)
Constraint Satisfaction Problem

Assignment is a function	𝑎𝑠𝑛: 𝑋 → ℤ

Example:

• 𝑎𝑠𝑛: {𝑥 → 0, 𝑦 → 0}

• 𝑎𝑠𝑛: {𝑥 → 2, 𝑦 → 4}	

A solution is an assigment that satisfies all the constraints

𝑎𝑠𝑛: 𝑥 → 2, 𝑦 → 4 	satisKies	𝑥	¹	 𝑦, 𝑥 > 1

A problem can have several solutions, when you want to find the

best solution based in one parameter or objective we said it is an

optimization problem.

𝐸𝑥𝑎𝑚𝑝𝑙𝑒

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1,2 , 𝑦: 2,3,4

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑥 > 1

5

Is modeling language to specify a CSP. https://www.minizinc.org/

MiniZinc: Basic structure
Solvers

var 0..2: x;
var {2,3,4}: y;
constraint x != y;%arithmetic operators, {>,>=,=<,<,!=,=}
constraint x > 1;
solve satisfy;

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1,2 , 𝑦: 2,3,4

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹ 𝑦, 𝑥 > 1

var 0..2: x;

variable domain name

var {2,3,4}: y;

https://www.minizinc.org/

6

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?

MiniZinc: 3-towers
Solvers

This is a solution This is not a solution

7

Model: Variables, Domains, Constraints

Variables: {𝑇#, 𝑇$, 𝑇%}

Domain: 𝑇#: 0,1,2 , 𝑇$: 0,1,2 , 𝑇%: 0,1,2 . Domain represents the column

Constraints: 𝑇#¹	𝑇$, 𝑇#¹	𝑇%, 𝑇$¹	𝑇%

MiniZinc: 3-towers model
Solvers

var 0..2: T1;
var 0..2: T2;
var 0..2: T3;
constraint T1 != T2;
constraint T1 != T3;
constraint T2 != T3;
solve satisfy;

8

Queens -> Row, Column, Diagonal
N -> Parameter not fixed

MiniZinc: N-queens
Solvers

int: n=?;
 array[1..n] of var 1..n: queens;

constraint forall(i in 1..n, j in i+1..n)
(queens[i]+i != queens[j]+j
/\ queens[i]-i != queens[j]-j);

solve satisfy;

Generate a
conjunction of
constraints /\

Exercise:
1. Complete with the missing constraints.
2. Is it possible to get a solution with n=3?
3. How many queens can you solve in less

than 5 seconds?

9

Naive algorithm: Enumerate all possible combination of values

Solving algorithm
Solvers

𝑥 = 0, 𝑦 = 2
𝑥 = 0, 𝑦 = 3
𝑥 = 1, 𝑦 = 2
𝑥 = 1, 𝑦 = 3
𝑥 = 2, 𝑦 = 2
𝑥 = 2, 𝑦 = 3

We can get all the possible combinations
with the search tree

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1,2 , 𝑦: 2,3

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹ 𝑦, 𝑥 > 1

𝑥 = 0 𝑥 =1
𝑥 =2

𝑦 = 2 𝑦 = 3
𝑦 = 2

𝑦 = 3
𝑦 = 2

𝑦 = 3

10

CP solvers perform an inference step, called propagation, in each node
• Given the domains and one constraint, can we remove values from the domains?

Solving algorithm
Solvers

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1,2 , 𝑦: 2,3

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑥 > 1

𝑥	¹	 𝑦:
𝑥: 0,1,2 , 𝑦: {2,3}

All constraints are satisfied,
search is not necessary.

Solutions:
𝑥 = 2, 𝑦 = 3

𝑥 > 1:
𝑥: 0,1, 𝟐 , 𝑦: {2,3}

𝑥	¹	 𝑦:
𝑥: 2 , 𝑦: {2,3}

𝑥 = 0 𝑥 =1
𝑥 =2

𝑦 = 2
𝑦 = 3

𝑦 = 2
𝑦 = 3

𝑦 = 2
𝑦 = 3

11

Not always we can find the solutions without searching

Solving algorithm
Solvers

𝑥 = 0

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧

𝑥	¹	 𝑦	and	𝑦	¹	 𝑧	do not produce
a solution, search

1- 𝑥 = 0 given 𝑥	¹	 𝑦 we have 𝑦 = 1,
𝑧: {0,1}
2- 𝑦 = 1 given 𝑦	¹	 𝑧 we have 𝑧 = 1
3- Solution {𝑥 = 0, 𝑦 = 1, 𝑧 = 0}

12

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?

MiniZinc: 3-towers
Solvers

13

The interleaving of propagate and search is called propagate-and-search algorithm.

Solving algorithm
Solvers

𝑠𝑜𝑙𝑣𝑒 < 𝑋, 𝐷, 𝐶 >

𝐷& ← propagate < 𝑋, 𝐷, 𝐶 >

𝐢𝐟	∀𝑑 ∈ 𝐷&, 𝑑 = 1

𝐫𝐞𝐭𝐮𝐫𝐧	{𝐷′} //	we	found	a	solution

𝐢𝐟	∃𝑑 ∈ 𝐷&, 𝑑 = 0

𝐫𝐞𝐭𝐮𝐫𝐧	{	} //	there	are	no	solution

{𝐿, 𝑅} ← split(𝐷′)

𝐫𝐞𝐭𝐮𝐫𝐧	𝑠𝑜𝑙𝑣𝑒 < 𝑋, 𝐿, 𝐶 > ∪ 𝑠𝑜𝑙𝑣𝑒 < 𝑋, 𝑅, 𝐶 > 	//	search

14

Reasoning locally on constraints is not always the most efficient way to solve the problem
• Global constraints help to reason more globally, find infeasibilities earlier, prune domain

better.

Global constraint
Solvers

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧, 𝑦	¹	 𝑧

We cannot detect failure when we apply the constraints individually. But with the global
constraint 𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 we can.

15

𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥#, 𝑥$, … , 𝑥')	semantically equivalent to {	𝑥(≠ 𝑥) 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	 ≠ 	𝑗	} but provides a
more efficient propagation algorithm (graph matching).

Global constraint - alldifferent
Solvers

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

𝑥

𝑦

𝑧

0

1

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧, 𝑦	¹	 𝑧

16

𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥#, 𝑥$, … , 𝑥')	semantically equivalent to {	𝑥(≠ 𝑥) 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	 ≠ 	𝑗	} but provides a
more efficient propagation algorithm (graph matching).

Global constraint - alldifferent
Solvers

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

𝑥

𝑦

𝑧

0

1

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧, 𝑦	¹	 𝑧

17

𝑎𝑙𝑙𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡(𝑥#, 𝑥$, … , 𝑥')	semantically equivalent to {	𝑥(≠ 𝑥) 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	 ≠ 	𝑗	} but provides a
more efficient propagation algorithm (graph matching).

Global constraint - alldifferent
Solvers

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

Solution of alldifferent: Maximum matching covering a set of variables.

𝑥

𝑦

𝑧

0

1

Infeasible. The cardinality of maximum matching (2) is smaller than the number of
variables (3)

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧, 𝑦	¹	 𝑧

18

Besides detecting infeasibility earlier, can assign values earlier

Global constraint - alldifferent
Solvers

𝑥

𝑦

𝑧

0

1

𝑧: 0,1,2

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑥, 𝑦, 𝑧}

𝐷𝑜𝑚𝑎𝑖𝑛: 	𝑥: 0,1 , 𝑦: 0,1 , 𝑧: {0,1,2}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥	¹	 𝑦, 𝑦	¹	 𝑧, 𝑦	¹	 𝑧
2

19

Exercise: Try alldifferent in N-queens and check the efficiency.

Global constraint - alldifferent
Solvers

include "alldifferent.mzn";

int: n=200;
 array[1..n] of var 1..n: queens_alldiff;

constraint alldifferent(queens_alldiff);
constraint alldifferent([queens_alldiff[i]+i | i in 1..n]);
constraint alldifferent([queens_alldiff[i]-i | i in 1..n]);

solve satisfy;

20 Real problem

Satellite image selection problem (SIMS)

2014
192 EO
satellites

2021
971 EO satellites

>100 TB of satellite
imagery per day

Satellite images: Planet Labs, Inc.

21 Real problem

Satellite image selection problem (SIMS)

To cover large areas we need several

images
Mosaic

22 Real problem

Satellite image selection problem (SIMS)

Which combination?
NP-Hard
Enumeration: 2n

23 Real problem

Satellite image selection problem (SIMS)

Remove the area of
images outside AOI

Find all intersections

The cover constraint and
cost can be modeled as the
classical weighted set cover
problem

Universe = Union of intersections (parts)
Images -> Sets with parts and weight = cost

24

Multi-objective problem:
• Cost
• Clouds
• Resolution
• Incidence angle

Satellite image selection problem (SIMS) - Model
Real problem

Single objective Multiobjective

Pareto front

25

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: {𝑡𝑎𝑘𝑒𝑛(|𝑖 = 1, . . 𝑛}

𝐷𝑜𝑚𝑎𝑖𝑛: 𝑡𝑎𝑘𝑒𝑛(: 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑐𝑜𝑣𝑒𝑟

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠: 𝑐𝑜𝑠𝑡, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

Satellite image selection problem (SIMS) - Model
Real problem

Cover constraint:

w
(:+∈-./!

𝑡𝑎𝑘𝑒𝑛(= true, for	all	𝑢 ∈ 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒

constraint forall(u in UNIVERSE)(exists(i in IMAGES)(taken[i] /\ u in images[i]));

26

Cost:

𝑚𝑖𝑛 y
(∈-./

𝑐𝑜𝑠𝑡(∗ 𝑡𝑎𝑘𝑒𝑛(

var int: total_cost = sum(i in IMAGES)(costs[i] * taken[i]);

Satellite image selection problem (SIMS) - Model
Real problem

27

Resolution:

𝑚𝑖𝑛 y
+∈0'(12342

𝑚𝑖𝑛	{	𝑅(|	𝑢 ∈ 𝑃(,	𝑡𝑎𝑘𝑒𝑛(= true}

var int: max_resolution = sum(u in UNIVERSE)(min(i in IMAGES where u in

images[i] /\ taken[i])(resolution[i]));

Incidence angle:

𝑚𝑖𝑛{	𝑚𝑎𝑥{	𝑡𝑎𝑘𝑒𝑛(∗ 𝐼𝑛𝑐(|	𝑖	 ∈ 𝐼𝑚𝑔}}

var int: max_incidence = max(i in IMAGES)(taken[i] * incidence_angle[i]);

Satellite image selection problem (SIMS) - Model
Real problem

28

Manuel Combarro Simón
Doctoral researcher
manuel.combarrosimon@uni.lu

Parallel Computing and
Optimisation Group

Contact:

@SnT_uni_lu SnT, Interdisciplinary Centre for
Security, Reliability and TrustConnect with us

Pierre Talbot
Research associate
pierre.talbot@uni.lu

