SIT

Introduction to Constraint Programming

Manuel Combarro Simón

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

Agenda

- 1. Constraint satisfaction problem
- 2. Minizinc
- 3. Solving algorithm
- 4. Global constraint
- 5. Real problem

Constraint Satisfaction Problem (CSP)

Triplet $\langle X, D, C \rangle$

X: Set of variables D: Domains of variables C: Set of constraints Example

$$<\{x,y\}, \left\{\{0,1,2\}_x, \{2,3,4\}_y\right\}, \{x\neq y, x>1\}>$$

Variables: $\{x, y\}$ Domain: x: $\{0,1,2\}, y: \{2,3,4\}$ Constraints: $x \neq y, x > 1$

Constraint Satisfaction Problem (CSP)

Assignment is a function $asn: X \to \mathbb{Z}$

Example:

- $asn: \{x \to 0, y \to 0\}$
- $asn: \{x \rightarrow 2, y \rightarrow 4\}$

A solution is an assignment that satisfies all the constraints

 $asn: \{x \to 2, y \to 4\}$ satisfies $x \neq y, x > 1$

A problem can have several solutions, when you want to find the best solution based in one parameter or objective we said it is an optimization problem. Example

Variables: $\{x, y\}$ Domain: x: $\{0,1,2\}, y: \{2,3,4\}$ Constraints: $x \neq y, x > 1$

MiniZinc: Basic structure

Is modeling language to specify a CSP. https://www.minizinc.org/

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?

ĬĬĬ

This is a solution

This is \underline{not} a solution

7

MiniZinc: 3-towers model

Model: Variables, Domains, Constraints

Variables: $\{T_1, T_2, T_3\}$ Domain: $T_1: \{0, 1, 2\}, T_2: \{0, 1, 2\}, T_3: \{0, 1, 2\}$. Domain represents the column Constraints: $T_1 \neq T_2, T_1 \neq T_3, T_2 \neq T_3$

var 0..2: T1; var 0..2: T2; var 0..2: T3; constraint T1 != T2; constraint T1 != T3; constraint T2 != T3; solve satisfy;

T Runn	ing	3_towers.mzn
11 =	- 2;	
T2 =	: 1;	
T3 =	:0;	
T1 =	1;	
T2 =	2:	
T3 -	. a.	
15 -	,	
11 =	- 2;	
T2 =	:0;	
T3 =	: 1;	
T1 =	0;	
T2 =	2:	
T3 -	1.	
15 -	· -,	
 T4	1.	
11 =	: 1;	
T2 =	:0;	
T3 =	2;	
T1 =	0;	
T2 =	1:	
T3 =	2	
.5 -	,	

MiniZinc: N-queens

Queens -> Row, Column, Diagonal N -> Parameter not fixed

Exercise:

- 1. Complete with the missing constraints.
- 2. Is it possible to get a solution with n=3?
- 3. How many queens can you solve in less than 5 seconds?

int: n=?; array[1..n] of var 1..n: queens;

constraint forall(i in 1..n, j in i+1..n)
(queens[i]+i != queens[j]+j
/\ queens[i]-i != queens[j]-j);

Generate a conjunction of constraints /\

solve satisfy;

Naive algorithm: Enumerate all possible combination of values

Variables: $\{x, y\}$ Domain: x: $\{0,1,2\}, y: \{2,3\}$ Constraints: $x \neq y, x > 1$

x = 0, y = 2 x = 0, y = 3 x = 1, y = 2 x = 1, y = 3 x = 2, y = 2x = 2, y = 3 We can get all the possible combinations with the search tree

CP solvers perform an inference step, called propagation, in each node

• Given the domains and <u>one</u> constraint, can we remove values from the domains?

Not always we can find the solutions without searching

```
Variables: \{x, y, z\}
Domain: x: \{0,1\}, y: \{0,1\}, z: \{0,1\}
Constraints: x \neq y, y \neq z
```

```
x \neq y and y \neq z do not produce
a solution, search
1 - x = 0 given x \neq y we have y = 1,
z: \{0,1\}
2 - y = 1 given y \neq z we have z = 1
3- Solution \{x = 0, y = 1, z = 0\}
```

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3x3, in a way that they cannot attack each other?

ĬĬ

Ï

The interleaving of propagate and search is called *propagate-and-search* algorithm.

```
- solve(< X, D, C >)

D' \leftarrow propagate(< X, D, C >)

if ∀d ∈ D', |d| = 1

return {D'} // we found a solution

if ∃d ∈ D', |d| = 0

return { } // there are no solution

{L, R} ← split(D')

- return solve(< X, L, C >) ∪ solve(< X, R, C >) // search
```

Global constraint

Reasoning locally on constraints is not always the most efficient way to solve the problem

 Global constraints help to reason more globally, find infeasibilities earlier, prune domain better.

Variables: {x, y, z}

```
Domain: x: \{0,1\}, y: \{0,1\}, z: \{0,1\}
```

```
Constraints: x \neq y, y \neq z, y \neq z
```

We cannot detect failure when we apply the constraints individually. But with the global constraint *alldifferent* we can.

all different $(x_1, x_2, ..., x_n)$ semantically equivalent to $\{x_i \neq x_j \text{ for all } i \neq j\}$ but provides a more efficient propagation algorithm (graph matching).

Variables: $\{x, y, z\}$ Domain: $x: \{0,1\}, y: \{0,1\}, z: \{0,1\}$ Constraints: $x \neq y, y \neq z, y \neq z$

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

all different $(x_1, x_2, ..., x_n)$ semantically equivalent to $\{x_i \neq x_j \text{ for all } i \neq j\}$ but provides a more efficient propagation algorithm (graph matching).

Variables: $\{x, y, z\}$ Domain: x: $\{0,1\}, y: \{0,1\}, z: \{0,1\}$ Constraints: $x \neq y, y \neq z, y \neq z$

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

all different $(x_1, x_2, ..., x_n)$ semantically equivalent to $\{x_i \neq x_j \text{ for all } i \neq j\}$ but provides a more efficient propagation algorithm (graph matching).

Variables: $\{x, y, z\}$ *Domain*: x: $\{0,1\}, y$: $\{0,1\}, z$: $\{0,1\}$ *Constraints*: $x \neq y, y \neq z, y \neq z$

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Maximum matching: A matching that cannot be augmented by any edge.

Solution of alldifferent: Maximum matching covering a set of variables.

Infeasible. The cardinality of maximum matching (2) is smaller than the number of variables (3)

Besides detecting infeasibility earlier, can assign values earlier

Variables: $\{x, y, z\}$ Domain: x: $\{0,1\}, y: \{0,1\}, z: \{0,1,2\}$ Constraints: $x \neq y, y \neq z, y \neq z$

Exercise: Try all different in N-queens and check the efficiency.

include "alldifferent.mzn";

int: n=200; array[1..n] of var 1..n: queens_alldiff;

constraint alldifferent(queens_alldiff); constraint alldifferent([queens_alldiff[i]+i | i in 1..n]); constraint alldifferent([queens_alldiff[i]-i | i in 1..n]);

solve satisfy;

2014 192 EO satellites

2021 971 EO satellites

>100 TB of satellite imagery per day

To cover large areas we need several

images

Mosaic

Which combination? NP-Hard Enumeration: 2ⁿ

10.0

Remove the area of

Find all intersections

Multi-objective problem:

- Cost
- Clouds
- Resolution
- Incidence angle

Variables: { $taken_i | i = 1, ... n$ }

Domain: taken_i: {false, true}

Constraints: cover

Objectives: cost, resolution, incidence

Cover constraint:

 $\bigvee_{i:u\in Img_i} taken_i = true, \quad \text{ for all } u \in Universe$

constraint forall(u in UNIVERSE)(exists(i in IMAGES)(taken[i] /\ u in images[i]));

Cost:

$$min\sum_{i\in Img}cost_i * taken_i$$

var int: total_cost = sum(i in IMAGES)(costs[i] * taken[i]);

Resolution:

$$min \sum_{u \in Universe} min \{ R_i \mid u \in P_i, taken_i = true \}$$

var int: max_resolution = sum(u in UNIVERSE)(min(i in IMAGES where u in images[i] /\ taken[i])(resolution[i]));

Incidence angle:

```
min\{max\{taken_i * Inc_i | i \in Img\}\}
```

var int: max_incidence = max(i in IMAGES)(taken[i] * incidence_angle[i]);

SIT

Parallel Computing and Optimisation Group

Contact:

Manuel Combarro Simón Doctoral researcher manuel.combarrosimon@uni.lu

Pierre Talbot Research associate pierre.talbot@uni.lu

Connect with us

Ƴ @SnT_uni_lu

SnT, Interdisciplinary Centre for Security, Reliability and Trust