SIIT

Introduction to Constraint Programming

Manuel Combarro Simón

Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

Agenda

1. Constraint satisfaction problem
2. Minizinc
3. Solving algorithm
4. Global constraint
5. Real problem

Constraint Satisfaction Problem (CSP)

Triplet $\langle X, D, C\rangle$

X: Set of variables
D: Domains of variables
C:Set of constraints

Example
$<\{x, y\},\left\{\{0,1,2\}_{x},\{2,3,4\}_{y}\right\},\{x \neq y, x>1\}>$

Variables: $\{x, y\}$
Domain: $x:\{0,1,2\}, y:\{2,3,4\}$
Constraints: $x \neq y, x>1$

Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Assignment is a function asn: $X \rightarrow \mathbb{Z}$
Example:

- asn: $\{x \rightarrow 0, y \rightarrow 0\}$
- asn: $\{x \rightarrow 2, y \rightarrow 4\}$

A solution is an assigment that satisfies all the constraints asn: $\{x \rightarrow 2, y \rightarrow 4\}$ satisfies $x \neq y, x>1$

A problem can have several solutions, when you want to find the best solution based in one parameter or objective we said it is an optimization problem.

Example

Variables: $\{x, y\}$
Domain: $x:\{0,1,2\}, y:\{2,3,4\}$
Constraints: $x \neq y, x>1$

MiniZinc: Basic structure

Is modeling language to specify a CSP. https://www.minizinc.org/

Variables: $\{x, y\}$
Domain: $x:\{0,1,2\}, y:\{2,3,4\}$
Constraints: $x \neq y, x>1$

```
var 0..2: x;
var {2,3,4}: y;
constraint x != y;%arithmetic operators, {>,>=,=<,<,!=,=}
constraint x > 1;
solve satisfy;
```


Solvers

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3×3, in a way that they cannot attack each other?

This is a solution

This is not a solution

MiniZinc: 3-towers model

Model: Variables, Domains, Constraints

Variables: $\left\{T_{1}, T_{2}, T_{3}\right\}$
Domain: $T_{1}:\{0,1,2\}, T_{2}:\{0,1,2\}, T_{3}:\{0,1,2\}$. Domain represents the column
Constraints: $T_{1} \neq T_{2}, T_{1} \neq T_{3}, T_{2} \neq T_{3}$
var 0..2: T1;
var 0..2: T2;
var 0..2: T3; constraint T1 != T2; constraint T1 != T3; constraint T2 != T3; solve satisfy;

MiniZinc: \mathbf{N}-queens

Queens -> Row, Column, Diagonal N -> Parameter not fixed
int: n=?;
array[1..n] of var 1..n: queens;
constraint forall(i in 1..n, j in i+1..n) (queens[i]+i != queens[j]+j
/\ queens[i]-i != queens[j]-j);

Exercise:

1. Complete with the missing constraints.
2. Is it possible to get a solution with $n=3$?
3. How many queens can you solve in less than 5 seconds?
solve satisfy;

Solving algorithm

Naive algorithm: Enumerate all possible combination of values

Variables: $\{x, y\}$
Domain: $x:\{0,1,2\}, y:\{2,3\}$
Constraints: $x \neq y, x>1$
$x=0, y=2$
$x=0, y=3$
$x=1, y=2$
$x=1, y=3$
$x=2, y=2$
$x=2, y=3$

We can get all the possible combinations with the search tree

Solving algorithm

CP solvers perform an inference step, called propagation, in each node

- Given the domains and one constraint, can we remove values from the domains?

Variables: $\{x, y\}$
Domain: $x:\{0,1,2\}, y:\{2,3\}$
Constraints: $x \neq y, x>1$

$$
\begin{aligned}
& x \neq y: \\
& x:\{0,1,2\}, y:\{2,3\} \\
& x>1: \\
& x:\{0,1,2\}, y:\{2,3\} \\
& x \neq y: \\
& x:\{2\}, y:\{2,3\}
\end{aligned}
$$

All constraints are satisfied, search is not necessary.

Solutions:

$$
x=2, y=3
$$

Solving algorithm

Not always we can find the solutions without searching

Variables: $\{x, y, z\}$
Domain: $x:\{0,1\}, y:\{0,1\}, z:\{0,1\}$
Constraints: $x \neq y, y \neq z$

MiniZinc: 3-towers

Can you put 3 towers in a chessboard of 3×3, in a way that they cannot attack each other?

I

Solving algorithm

The interleaving of propagate and search is called propagate-and-search algorithm.

- solve ($\langle X, D, C\rangle$)
$D^{\prime} \leftarrow$ propagate $\left.(<X, D, C\rangle\right)$
if $\forall d \in D^{\prime},|d|=1$
return $\left\{D^{\prime}\right\} / /$ we found a solution
if $\exists d \in D^{\prime},|d|=0$
return \{\} // there are no solution
$\{L, R\} \leftarrow \operatorname{split}\left(D^{\prime}\right)$
return solve $(\langle X, L, C\rangle) \cup$ solve $(\langle X, R, C\rangle) / /$ search

Global constraint

Reasoning locally on constraints is not always the most efficient way to solve the problem

- Global constraints help to reason more globally, find infeasibilities earlier, prune domain better.

Variables: $\{x, y, z\}$
Domain: $x:\{0,1\}, y:\{0,1\}, z:\{0,1\}$
Constraints: $x \neq y, y \neq z, y \neq z$
We cannot detect failure when we apply the constraints individually. But with the global constraint alldifferent we can.

Solver

Global constraint - alldifferent

alldifferent $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ semantically equivalent to $\left\{x_{i} \neq x_{j}\right.$ for all $\left.i \neq j\right\}$ but provides a more efficient propagation algorithm (graph matching).


```
Variables: {x,y,z}
Domain: x: {0,1}, y:{0,1},z:{0,1}
Constraints: }x\not=y,y\not=z,y\not=
```

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.

Solvers

Global constraint - alldifferent

alldifferent $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ semantically equivalent to $\left\{x_{i} \neq x_{j}\right.$ for all $\left.i \neq j\right\}$ but provides a more efficient propagation algorithm (graph matching).


```
Variables: {x,y,z}
Domain: x: {0,1}, y: {0,1}, z: {0,1}
Constraints: }x\not=y,y\not=z,y\not=
```

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.
Maximum matching: A matching that cannot be augmented by any edge.

Global constraint - alldifferent

alldifferent $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ semantically equivalent to $\left\{x_{i} \neq x_{j}\right.$ for all $\left.i \neq j\right\}$ but provides a more efficient propagation algorithm (graph matching).


```
Variables: {x,y,z}
Domain: x: {0,1},y:{0,1},z:{0,1}
Constraints: }x\not=y,y\not=z,y\not=
```

Matching: Subset of edges s.t. no common endpoint exists for any pair of edges.
Maximum matching: A matching that cannot be augmented by any edge.
Solution of alldifferent: Maximum matching covering a set of variables.
Infeasible. The cardinality of maximum matching (2) is smaller than the number of variables (3)

Global constraint - alldifferent

Besides detecting infeasibility earlier, can assign values earlier

$$
z:\{0,1,2\}
$$

$$
\begin{aligned}
& \text { Variables: }\{x, y, z\} \\
& \text { Domain: } x:\{0,1\}, y:\{0,1\}, z:\{0,1,2\} \\
& \text { Constraints: } x \neq y, y \neq z, y \neq z
\end{aligned}
$$

Global constraint - alldifferent

Exercise: Try alldifferent in N -queens and check the efficiency.

include "alldifferent.mzn";

int: $\mathrm{n}=200$;
array[1..n] of var 1..n: queens_alldiff;
constraint alldifferent(queens_alldiff); constraint alldifferent([queens_alldiff[i]+i | i in 1..n]); constraint alldifferent([queens_alldiff[i]-i | i in 1..n]);
solve satisfy;

Satellite image selection problem (SIMS)

Satellite image selection problem (SIMS)

To cover large areas we need several images

Mosaic

Satellite image selection problem (SIMS)

\longrightarrow

Which combination?
NP-Hard
Enumeration: 2^{n}

Satellite image selection problem (SIMS)

Remove the area of images outside AOI

The cover constraint and cost can be modeled as the classical weighted set cover problem

Universe = Union of intersections (parts)
Images -> Sets with parts and weight = cost

Satellite image selection problem (SIMS) - Model

Multi-objective problem:

- Cost
- Clouds
- Resolution
- Incidence angle

Single objective
Multiobjective

Satellite image selection problem (SIMS) - Model

Variables: $\left\{\right.$ taken $\left._{i} \mid i=1, . . n\right\}$
Domain: taken $_{i}:\{$ false, true $\}$
Constraints: cover
Objectives: cost, resolution,incidence

Cover constraint:
$\bigvee_{i: u \in \operatorname{Img}}^{i}$ $\operatorname{taken}_{i}=$ true, \quad for all $u \in$ Universe
constraint forall(u in UNIVERSE)(exists(i in IMAGES)(taken[i] / u in images[i]));

Satellite image selection problem (SIMS) - Model

Cost:

```
min }\mp@subsup{\sum}{i\inImg}{}\mp@subsup{\operatorname{cost}}{i}{}*\mp@subsup{\mathrm{ taken }}{i}{
var int: total_cost = sum(i in IMAGES)(costs[i] * taken[i]);
```


Satellite image selection problem (SIMS) - Model

Resolution:

```
\(\min \sum_{u \in \text { Universe }} \min \left\{R_{i} \mid u \in P_{i}\right.\), taken \(_{i}=\) true \(\}\)
var int: max_resolution = sum(u in UNIVERSE)(min(i in IMAGES where u in
images[i] /
```

Incidence angle:
$\min \left\{\max \left\{\right.\right.$ taken $\left.\left._{i} * \operatorname{Inc} c_{i} \mid i \in \operatorname{Img}\right\}\right\}$
var int: max_incidence = max(i in IMAGES)(taken[i] * incidence_angle[i]);

Silit
 Parallel Computing and Optimisation Group

Contact:

Manuel Combarro Simón Doctoral researcher manuel.combarrosimon@uni.lu

Pierre Talbot
Research associate pierre.talbot@uni.Iu

* Security, Reliability and Trust

