
Abstract Constraint Programming

Session 5—Abstract Interpretation Workshop

Pierre Talbot

pierre.talbot@uni.lu

20th June 2024

University of Luxembourg

This seminar in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract constraint reasoning.

WHY?

• Combining constraint solvers.

• Constructing sound propagators over complex

domains.

• Constraint solving on GPUs.

1

This seminar in a nutshell!

We present the “fusion” of...

Constraint reasoning + Abstract interpretation

(and lattice theory)

that gives us abstract constraint reasoning.

WHY?

• Combining constraint solvers.

• Constructing sound propagators over complex

domains.

• Constraint solving on GPUs.

1

Background on First-Order Logic

1

Syntax of First-Order Logic (FOL)

Let S = ⟨X ,F ,P⟩ be a first-order signature where X set of variables, F

set of function symbols and P set of predicate symbols.

⟨Term⟩ ::= x variable x ∈ X

| f (Term, . . . ,Term) function f ∈ F

⟨Φ⟩ ::= p(Term, . . . ,Term) predicate p ∈ P

| ¬Φ negation

| Φ ⋄ Φ connector ⋄ ∈ {∧,∨,⇒,⇔}
| ∃x , Φ existential quantifier

| ∀x , Φ universal quantifier

• A theory is a set of formulas without free variables.

• The substitution φ[x 7→ t] denotes the formula φ ∈ Φ in which all

free occurrences of the variable x in φ have been replaced by the

term t.

2

Semantics of FOL

A structure A is a tuple (U, JKF , JKP) where

1. U is a non-empty set of elements—called the universe of discourse,

2. JKF is a function mapping function symbols f ∈ F with arity n to

interpreted functions Jf KF : Un → U, and

3. JKP is a function mapping predicate symbols p ∈ P with arity n to

interpreted predicates JpKP ⊆ Un.

An assignment is a function X → U ∈ Asn mapping variables to values.

Let ρ ∈ Asn, we write ρ[x 7→ d] the assignment in which we updated the

value of x by d in ρ.

3

Entailment

The syntax and semantics are related by the ternary relation A ⊨ρ φ,

called the entailment, where A is a structure, ρ ∈ Asn and φ ∈ Φ. It is

read as “the formula φ is satisfied by the assignment ρ in the structure

A”. We first give the interpretation function JKρ for evaluating the terms

of the language:

JxKρ = ρ(x) if x ∈ X

Jf (t1, . . . , tn)Kρ = Jf KF (Jt1Kρ, . . . , JtnKρ)

The relation ⊨ is defined inductively as follows:

A ⊨ρ p(t1, . . . , tn) if (Jt1Kρ, . . . , JtnKρ) ∈ JpKP
A ⊨ρ φ1 ∧ φ2 if A ⊨ρ φ1 and A ⊨ρ φ2

A ⊨ρ φ1 ∨ φ2 if A ⊨ρ φ1 or A ⊨ρ φ2

A ⊨ρ ¬φ if A ⊨ρ φ does not hold

A ⊨ρ ∃x , φ if there exists d ∈ U such that A ⊨ρ[x 7→d] φ

A ⊨ρ ∀x , φ if for all d ∈ U, we have A ⊨ρ[x 7→d] φ

4

Examples of FOL for Constraint Reasoning

Constraint satisfaction problem (CSP)

CSP ⟨X ,D,C ⟩ is a structured presentation of the logical formula:∧
1≤i≤n

xi ∈ Di ∧
∧

1≤i≤|C |

Ci

Constraint optimization problem (COP)

A COP aims to find the solution of a formula φ maximizing x ∈ X :

φ ∧ ∀y , (φ[x 7→ y] ∧ y ≤ x)

Multiobjective optimization problem (MOP)

A MOP is a COP with several objectives x1, . . . , xn ∈ X :

φ ∧ ∀y1, . . . , yn, (φ[x1 7→ y1, . . . , xn 7→ yn] ∧ (x1 > y1 ∨ . . . ∨ xn > yn))

5

Abstract Constraint Reasoning

5

One Problem, Many Communities, Many Formalisms

Many communities emerged to solve the same problem: find ρ such that A ⊨ρ φ.

BUT they (generally) focus on different fragments of FOL:

• Propositional fragment (SAT): (a ∨ b) ∧ (¬b ∨ c) with a, b, c ∈ {0, 1}.
• Pseudo-Boolean fragment:

∑
1≤i≤n ci ∗ ai ≤ c0 with ai ∈ {0, 1} and ci some

integers constants.

• Linear programming (LP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ R and ci some real

constants.

• Integer linear programming (ILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z and ci some

integer constants.

• Mixed integer linear programming (MILP):
∑

1≤i≤n ci ∗ bi ≤ b0 with bi ∈ Z ∪ R
and ci some integer or real constants.

• Uninterpreted fragment (logic programming).

• Answer set programming.

• Discrete constraint programming: ⟨X ,D,C⟩ with Di ∈ Pf (Z).
• Continuous constraint programming: ⟨X ,D,C⟩ with Di ∈ I(R).
• Satisfiability modulo theories (SMT).

• ...

6

One Theory to Rule Them All?

SAT [DHK13]

SMT [DHK14]

Logic programming [Cou20]

Constraint programming [Pel+13]

Linear programming [CH78]

Multi-objective optimization

Multilevel programming

...

Abstract domains

7

Plan

I. Abstract Constraint Propagation
1. Concrete Domain for First-Order Logic

2. Abstract Propagation

II. Abstract Constraint Search
1. Hoare and Smyth Lattices

2. Abstract Search

III. Conclusion

8

Concrete Domain for First-Order Logic

8

Concrete Domain

Definition (Concrete domain)

The concrete domain is the Boolean lattice of assignments

D♭ = ⟨P(Asn),⊆,∪,∩,¬, {},Asn⟩ where ¬ is the set complement.

Given a structure A, we connect a logical formula to an element of the

concrete domain using the interpretation function defined as:

J.K♭ : Φ→ D♭

JφK♭ = {ρ ∈ Asn | A ⊨ρ φ}

A solution of the formula φ is an assignment s ∈ JφK♭. Applying the

interpretation function to a logical formula directly yields the set of all

solutions.

9

Inductive Definition of J.K♭

The Lindenbaum-Tarski algebra is the quotient lattice of quantifier-free

first-order formulas defined as ⟨Φ/ ≡,≤,∧,∨,¬, true, false⟩ with [φ]≡ ≤ [ψ]≡

iff ψ ⊢ φ. We now show that J.K♭ can be constructed inductively.

Theorem

The lattices Φ/ ≡ and Db are Boolean and J.K♭ is a Boolean homomorphism1.

That is, for all formulas φ and ψ, and each predicate p, we have:

• JtrueK♭ = Asn and JfalseK♭ = {},

• Jp(t1, . . . , tn)K♭ = {ρ ∈ Asn | (Jt1Kρ, . . . , JtnKρ) ∈ JpKP},

• Jφ ∧ ψK♭ = JφK♭ ∩ JψK♭,

• Jφ ∨ ψK♭ = JφK♭ ∪ JψK♭,

• J¬φK♭ = ¬JφK♭,

• φ ⊢ ψ ⇒ JφK♭ ⊆ JψK♭.

1A Boolean homomorphism is a {0,1}-lattice homomorphism between two Boolean

lattices.

10

Closure Operator

The concrete interpretation function J.K♭ can be lifted to a closure

operator over the concrete domain defined as follows:

F J.K : Φ→ (D♭ → D♭)

F JφKA ≜ A ∩ JφK♭

We can construct F J.K inductively. First, we define the semantics of

terms T J.K : Term→ (Asn→ U) inductively:

T JxKρ = ρ(x)

T Jf (t1, . . . , tn)Kρ = Jf KF (T Jt1Kρ, . . . , T JtnKρ)

And then the semantics of formulas:

F JtrueKA = A

F JfalseKA = {}
F Jp(t1, . . . , tn)KA = {ρ ∈ A | (T Jt1Kρ, . . . , T JtnKρ) ∈ JpKP}
F J¬φKA = A \ F JφKAsn
F Jφ1 ∧ φ2KA = F Jφ1KA ∩ F Jφ2KA
F Jφ1 ∨ φ2KA = F Jφ1KA ∪ F Jφ2KA

11

Closure Operator

The concrete interpretation function J.K♭ can be lifted to a closure

operator over the concrete domain defined as follows:

F J.K : Φ→ (D♭ → D♭)

F JφKA ≜ A ∩ JφK♭

We can construct F J.K inductively. First, we define the semantics of

terms T J.K : Term→ (Asn→ U) inductively:

T JxKρ = ρ(x)

T Jf (t1, . . . , tn)Kρ = Jf KF (T Jt1Kρ, . . . , T JtnKρ)

And then the semantics of formulas:

F JtrueKA = A

F JfalseKA = {}
F Jp(t1, . . . , tn)KA = {ρ ∈ A | (T Jt1Kρ, . . . , T JtnKρ) ∈ JpKP}
F J¬φKA = A \ F JφKAsn
F Jφ1 ∧ φ2KA = F Jφ1KA ∩ F Jφ2KA
F Jφ1 ∨ φ2KA = F Jφ1KA ∪ F Jφ2KA

11

Solutions of a FOL Formula

The solutions of φ are given by the greatest fixed point gfp⊆ F JφK.

Lemma

gfp⊆ F JφK = JφK♭

Similarly to abstract interpretation, we will look for an abstraction to

compute more efficiently the set of solutions.

12

Abstract Propagation

12

Abstract Domain

Definition

An abstract domain is a lattice ⟨A♯,⊑,⊔,⊓,⊥,⊤,F ♯J.K⟩ such that:

• Every element of A♯ is representable in a machine.

• The operations on A♯ are efficiently computable.

• F ♯J.K is order-preserving.

The concrete and abstract semantics are connected by a Galois

connection:

⟨P(X → U),⊆⟩ −−−→←−−−α
γ
⟨A♯,⊑⟩

13

Cartesian Abstraction

As a first approximation of the concrete domain, we take the Cartesian

abstraction X → P(U) which considers the values of each variable

independently.

⟨P(X → U),⊆⟩ −−−−→←−−−−
α×

γ×
⟨X → P(U), ⊆̇⟩

α×(P) ≜ x ∈ X 7→ {ρ(x) | ρ ∈ P}
γ×(P) ≜ {ρ ∈ X → U | ∀x ∈ X , ρ(x) ∈ P(x)}

where ⊆̇ is the pointwise set inclusion.

14

Cartesian Abstraction

We can define the abstract semantics of FOL over X → P(U) as follows:

F♯
×Jp(t1, . . . , tn)KP ≜

x ∈ X 7→ {v ∈ P(x) | ∃v1 ∈ F♯
×Jt1KP[x 7→ {v}], . . . , vn ∈ F♯

×JtnKP[x 7→ {v}],
(v1, . . . , vn) ∈ JpKP}

F♯
×Jφ1 ∧ φ2KP ≜ F♯

×Jφ1KP ∩× F♯
×Jφ2KP

F♯
×Jφ1 ∨ φ2KP ≜ F♯

×Jφ1KP ∪× F♯
×Jφ2KP

15

Soundness of F ♯
×J.K

Soundness for gfp

Let α ◦ f ◦ γ ⊑̇ f . Then gfp≤ f ≤ γ(gfp⊑ f).

Theorem

The semantics F ♯
×JφK is sound:

α× ◦ F JφK ◦ γ× ⊑̇ F ♯
×JφK

Proof.

By induction over the formula (case of ∧):

(α× ◦ F Jφ1 ∧ φ2K ◦ γ×)P
= α×(F Jφ1Kγ×(P) ∩ F Jφ2Kγ×(P))
= α×(F Jφ1Kγ×(P)) ⊓ α×(F Jφ2Kγ×(P))
⊑̇ F ♯

×Jφ1KP ⊓ F ♯
×Jφ2KP

= F ♯
×Jφ1 ∧ φ2KP

16

Interval Abstract Domain

The abstract domain of interval is

I♯ ≜ ⟨X → I, ⊑̇, ⊔̇, ⊓̇, x ∈ X 7→ ⊥, x ∈ X 7→ [−∞,∞],C♯
I J.K⟩ where

⊑̇, ⊔̇, ⊓̇ are pointwise interval operations.

We have the Galois connection:

⟨X → P(U), ⊆̇⟩ −−−→←−−−
α

γ
⟨X → I, ⊑̇⟩

α(S) ≜ x ∈ X 7→ [min S(x),max S(x)]

γ(R) ≜ x ∈ X 7→ {c ∈ U | ⌊R(x)⌋ ≤ c ≤ ⌈R(x)⌉}

17

Propagators

In the previous session, we defined:

C♯
I Jx ≤ yKσ ≜

σ[x 7→ σ(x) ⊓ [−∞, ⌈σ(y)⌉]]
⊓̇ σ[y 7→ σ(y) ⊓ [⌊σ(x)⌋,∞]]

C♯
I Jx ≤ yK corresponds to the definition of propagators in

constraint programming.

Given a conjunction of constraints such as x ≤ y ∧ y ̸= z ∧ z = x/y , we

can compute an overapproximation of the solutions set by:

propagate(ρ) ≜ gfp⊑ρ (C♯
I Jx ≤ yK ◦ C♯

I Jy ̸= zK ◦ C♯
I Jz = x/yK)

By theorems of abstract interpretation, it is a sound solving procedure: it

does not discard solutions from the problem.

18

Propagators

In the previous session, we defined:

C♯
I Jx ≤ yKσ ≜

σ[x 7→ σ(x) ⊓ [−∞, ⌈σ(y)⌉]]
⊓̇ σ[y 7→ σ(y) ⊓ [⌊σ(x)⌋,∞]]

C♯
I Jx ≤ yK corresponds to the definition of propagators in

constraint programming.

Given a conjunction of constraints such as x ≤ y ∧ y ̸= z ∧ z = x/y , we

can compute an overapproximation of the solutions set by:

propagate(ρ) ≜ gfp⊑ρ (C♯
I Jx ≤ yK ◦ C♯

I Jy ̸= zK ◦ C♯
I Jz = x/yK)

By theorems of abstract interpretation, it is a sound solving procedure: it

does not discard solutions from the problem.

18

Abstract Constraint Search

18

Traditional Constraint Solving

A classic solver in constraint programming:

1: solve(⟨X ,D,C ⟩)
2: ⟨X ,D ′,C ⟩ ← propagate(⟨X ,D,C ⟩)
3: if D ′ is an assignment then

4: return {D ′}
5: else if D ′ has an empty domain then

6: return {}
7: else

8: ⟨D1, . . . ,Dn⟩ ← branch(D ′)

9: return
⋃n

i=0 solve(⟨X ,Di ,C ⟩)
10: end if

19

Abstract Constraint Solving

A solver by abstract interpretation, with A♯ an abstract domain:

1: solveJφK(a ∈ A♯)

2: a← propagateJφK(a)
3: if split(a) = {a} then
4: return {a}
5: else if split(a) = {} then
6: return {}
7: else

8: ⟨a1, . . . , an⟩ ← split(a)

9: return
⋃n

i=0 solveJφK(ai)
10: end if

• Conservative extension: Traditional CP is based on a Cartesian

abstraction such as the interval abstract domain.

• Many abstract domains: Octagon, Polyhedron, products, . . .

• An additional abstract function split : A♯ → P(A♯)
20

Hoare and Smyth Lattices

20

Powerset is not enough...

Let ⟨L,≤⟩ be a lattice.

The powerset completion is ⟨P(L),⊆⟩ but..

• Two distinct elements a and b, such that a ≤L b, are not ordered in

P(L) since {a} ̸⊆ {b}.
• We have redundant elements, e.g., if a ≤L b, then the set {a, b}
contains the redundant element b.

This stems from the fact that the powerset completion views its elements

as atomic, and that its ordering is defined regardless of the structure of L.

21

Down-set and Up-set

A traditional way of dealing with this issue is to take the down-set or up-set

completion of the base lattice.

Definition (Down-set and up-set)

Let P be a poset, and S ⊆ P. The down-set ↓S and up-set ↑S are defined by:

↓S = {y ∈ P | ∃x ∈ S , y ≤ x} ↑S = {y ∈ P | ∃x ∈ S , y ≥ x}

Let a ∈ P, then we write ↓a for ↓{a} and ↑a for ↑{a}. The set of all

down-sets of P is denoted D(P), and the set of all up-sets is denoted U(P).

Theorem

⟨D(P),⊆,∪,∩, {},P⟩ and ⟨U(P),⊇,∩,∪,P, {}⟩ are complete lattices.

But it does not solve the redundancy issue.

22

Antichains

To overcome this drawback, we consider the antichains of a lattice L.

Definition (Antichain, minimal and maximal elements)

Let ⟨L,≤⟩ be a lattice. An antichain is a set S ⊆ L such that for all pairs of

elements a, b ∈ S , we have a ≤ b ⇔ a = b. Given a set Q ⊆ L, the set of its

minimal and maximal elements are defined as follows:

Min Q = {x ∈ Q | ∀y ∈ Q, ¬(x >L y)}
Max Q = {x ∈ Q | ∀y ∈ Q, ¬(x <L y)}

By definition, Min Q and Max Q are antichains.

Example

Consider the set of sets S = {{0, 1}, {1, 2}, {0}, {1}} ⊂ P(Z) such that each

element in S is ordered by subset inclusion. Then we have

Min S = {{0}, {1}} and Max S = {{0, 1}, {1, 2}}.

23

Hoare lattice

We equip the set of antichains of a lattice with two orderings called the

Hoare and Smyth orderings [Plo76; Smy78].

Definition (Hoare construction)

Let ⟨L,≤⟩ be a lattice. Then the Hoare construction ⟨LH ,≤,⊔,⊓,⊥,⊤⟩
is defined as follows:

• LH = {S ∈ Pf (L) | S is an antichain in L},
• X ≤ Y ≜ ∀y ∈ Y , ∃x ∈ X , x ≤L y ,

• X ⊔ Y ≜ Min {x ⊔L y | x ∈ X ∧ y ∈ Y },
• X ⊓ Y ≜ Min (X ∪ Y),

• ⊥ ≜ {⊥L} and ⊤ ≜ {}.

24

Smyth lattice

Definition (Smyth construction)

Let ⟨L,≤⟩ be a lattice. Then the Smyth construction

⟨LS ,≤,⊔,⊓,⊥,⊤⟩ is defined as follows:

• LS = {S ∈ Pf (L) | S is an antichain in L},
• X ≤ Y ≜ ∀x ∈ X , ∃y ∈ Y , x ≤L y ,

• X ⊔ Y ≜ Max (X ∪ Y),

• X ⊓ Y ≜ Max {x ⊓L y | x ∈ X ∧ y ∈ Y },
• ⊥ ≜ {} and ⊤ ≜ {⊤L}.

Theorem

Let L be a lattice, then ⟨LH ,≤⟩ and ⟨LS ,≤⟩ are lattices.

25

Intuitions

Let {a, b} be an antichain in the base lattice L.

• For both orderings: {a, b} ≤ {a, c} if b ≤L c .

• For Smyth, an antichain {a, b} can be extended with any new

element d ∈ L that is not comparable to a or b, thus obtaining the

new antichain {a, b, d}.
• For Hoare, we can forget about some uninteresting elements—for

example inconsistent states—and thus we have {a, b} ≤H {a}.

26

Abstract Search

26

Queuing Strategy

Let A be an abstract domain.

AH is the structure of the search tree.

Definition (Queuing strategy)

A queuing strategy is a pair of functions (push, pop) defined as follows:

push : AH × AH → AH

push(Q,B) ≜ Q ⊓H B

pop : AH → AH × A

pop(Q) ≜

{
(Q, a) iff ∃a ∈ Q, |split(a)| > 1

(Q,⊥A) otherwise

27

Abstract Solving

Let ⟨A,⊑⟩ be an abstract domain with a function split : A→ AH .

The fixpoint form of the constraint solving algorithm is:

solve : Φ→ (AH → AH)

solveJφK ≜ push ◦ (id × (split ◦ propagateJφK)) ◦ pop

Theorem

Let ⟨A,⊑⟩ be an abstract domain with concretization γA. Let φ be a

formula. If γA(a) = γ(split(a)), then

gfp⊆ F JφK ⊆ γ(gfp⊑ solveJφK)

with γ(H) ≜
⋃

a∈H γA(a).

28

Conclusion

28

In-Progress: Abstract Constraint Programming

Collaboration with Bruno Teheux

• Formal theory of propagators using calculational design.

• Solvers are fixpoint functions over abstract domains.

• Proofs in Lean/Coq?

29

In-Progress: Table Abstract Domain

• Context: In constraint programming, global constraints are

propagators with dedicated inference algorithms for subproblems,

e.g., alldifferent([x1,...,xn]).

• Research question: Which global constraints can be generalized into

abstract domains?

Collaboration with Éric Monfroy

We are working on the Table abstract domain generalizing the

well-known table constraint:

(x ≥ 4 ∧ y > 1 ∧ z < 3)

∨(x = 1 ∧ y = 2 ∧ z = 3)

∨(x > 1 ∧ y > 1 ∧ z > 3)

30

Perspective: Towards automatic creation of the abstract domain

Research question: Given a set of abstract domains and reduced

products, how to build the most efficient one to solve a given formula?

JK JK♭

γ

α

φ

A♯
1 × . . .× A♯

n C ♭

• How to create an appropriate combination of abstract domains for a

particular formula?

• “Type inference”: In which abstract domain goes each subformula

φi ∈ φ?

31

Conclusion

• Abstract interpretation a “grand unification theory” among the

fields of constraint reasoning?

• Not there yet, but interesting theory and promising results!

JK JK♭

γ

α

Φ

A♯ C ♭ f
g

[0..3]

[1..3]

[2..3]

[3..3]

⊤

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

32

References

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic
discovery of linear restraints among variables of a
program”. In: Proceedings of the 5th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages. 1978,

pp. 84–96.

[Cou20] Patrick Cousot. “The Symbolic Term Abstract Domain”.
In: TASE (Dec. 2020). url:

https://sei.ecnu.edu.cn/tase2020/file/video-slides-

PCousot-TASE-2020.pdf.

[DHK13] Vijay D’Silva, Leopold Haller, and Daniel Kroening.

“Abstract Conflict Driven Learning”. In: POPL ’13. ACM,

2013, pp. 143–154. doi: 10.1145/2429069.2429087.

33

https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf
https://sei.ecnu.edu.cn/tase2020/file/video-slides-PCousot-TASE-2020.pdf
https://doi.org/10.1145/2429069.2429087

[DHK14] Vijay D’Silva, Leopold Haller, and Daniel Kroening.

“Abstract satisfaction”. en. In: Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages - POPL ’14. San Diego, California, USA: ACM Press,

2014, pp. 139–150. isbn: 978-1-4503-2544-8. doi:

10.1145/2535838.2535868. url:

http://dl.acm.org/citation.cfm?doid=2535838.2535868

(visited on 09/17/2019).

[Pel+13] Marie Pelleau et al. “A constraint solver based on abstract
domains”. In: VMCAI 13’. Springer, 2013, pp. 434–454. doi:

10.1007/978-3-642-35873-9_26.

[Plo76] G. Plotkin. “A Powerdomain Construction”. In: SIAM
Journal on Computing 5.3 (1976), pp. 452–487. doi:

10.1137/0205035.

34

https://doi.org/10.1145/2535838.2535868
http://dl.acm.org/citation.cfm?doid=2535838.2535868
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1137/0205035

[Smy78] M. B. Smyth. “Power domains”. In: Journal of Computer and

System Sciences 16.1 (1978), pp. 23 –36. issn: 0022-0000. doi:

https://doi.org/10.1016/0022-0000(78)90048-X. url:

http://www.sciencedirect.com/science/article/pii/

002200007890048X.

35

https://doi.org/https://doi.org/10.1016/0022-0000(78)90048-X
http://www.sciencedirect.com/science/article/pii/002200007890048X
http://www.sciencedirect.com/science/article/pii/002200007890048X

	Abstract Constraint Propagation
	References

