Octagon Abstract Domain

Session 6

Thibault Falque
Abstract Interpretation Workshop — 20th June 2024

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG



1. Introduction

2. Abstract domain

3. Octagon abstract domain
4. Product of abstract domain
5. Experiments

6. Conclusion

1/40



Introduction



Abstract constraint programming
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Abstract constraint programming

BRUTE-FORCE DYNAMIC
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Why?

= A framework for combining constraint solvers
= Constraint solving on GPUs
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Constraint programming

= Constraint programming: we only specify what should be the
solution using relations on variables (declarative programming).
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Constraint programming

= Constraint programming: we only specify what should be the
solution using relations on variables (declarative programming).
= But we do not program how to compute the solution.
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An exemple of constraint problem

—— Task 1

—— Task 2

——— Task 4

— Task 5

= Constraint problem: Tasks have a duration, use resources
(#CPU/#GPU), and have precedence relations.
= Goal: Find a minimal schedule of the tasks on the HPC.
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Scheduling problem RCPSP

NP-complete optimisation problem:

= T is a set of tasks, d; € N the duration of task i.

= P are the precedences among tasks: i < j € P if i must terminate
before j starts.

= Ris a set of resources where k € R has a capacity ¢, € N.

= Each task i uses a quantity ri ; of resources k.
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Scheduling problem RCPSP

NP-complete optimisation problem:

= T is a set of tasks, d; € N the duration of task i.

= P are the precedences among tasks: i < j € P if i must terminate
before j starts.

= Ris a set of resources where k € R has a capacity ¢, € N.

= Each task i uses a quantity ri ; of resources k.

Goal: find a (minimal) planning of tasks T that satisfies precedences in P
without exceeding the capacity of available resources.
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Example with 5 tasks and 2 resources

Resources consumption

@ capadity |1
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& capadgity |
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CSP & COP

A constraint satisfaction problem is a tuple P = (X, D, C)
where:

a finite set of variables, denoted by X

D; € D the set of values taken by each variable x; € X

a finite set of constraints, denoted by C, each covering a sub-set of
X such as Ve €, scope(c) C X.
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CSP & COP

A constraint satisfaction problem is a tuple P = (X, D, C)

where:

a finite set of variables, denoted by X
D; € D the set of values taken by each variable x; € X
a finite set of constraints, denoted by C, each covering a sub-set of

X such as Ve €, scope(c) C X.

A constraint optimization problem is a tuple P = (X, D, C, O)

where:

a finite set of variables, denoted by X
D; € D the set of values taken by each variable x; € X
a finite set of constraints, denoted by C, each covering a sub-set of

X such as Vc €, scope(c) C X.

an objective function O = obj(X) to be maximized or minimized 7/40



Constraints model [Schutt et al.]

= Variables : s; € {0..h — 1} is the starting time of task i.
= Constraints :
V(ii<j)€EP, si+d <s (1)
Vje [1..n], Vie [1.n)\ {/},
b;’j@(S;SSj/\Sj< S,'+d,')

Vielon], nj+( > rixbij) < (3)
ie[L.-m\{j}

1. Temporal constraints (eq. 1)

2. Resources constraints (eq. 2 and 3): tasks decomposition of global
constraint cumulative.
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Abstract domain



Abstract domain

An abstract domain (Abs, <,Ul, T,~, [.], refine, split) is a lattice such that:

= Abs is a set of elements representable in a machine.

= < is a partial order.

= || performs the join of two elements (“union of information™).

= [ is the largest element (“initial state”).

= ~:A— D’ is a monotone concretization function.

= state : Abs — K gives the state of an element (K = { true, false,
unknown }).

s [.]:® — Absis a partial interpretation function turning a constraint into
an element of the abstract domain.

= refine: Abs — Abs is an extensive function, e.g., a < refine(a), refining an
abstract element (“gain information”).

= split: Abs — P(Abs) is an extensive function dividing an abstract element
into a set of sub-elements.

= = Abs x ®: 2k ¢ holds whenever v(a) C [¢]” the deduction relation,

called the ‘entailment”. 9/40



Interval

An interval is a pair (/, u) € Z? of the lower and upper bounds, written
[/, u].

The lattice of interval (Z,C, LI, M, L, [—o0, 00]) is defined as:
T 2 {[a,b]|a€ ZU{—o0},be ZU{oo},aC blU{L}
with the following operations:

[, Cc,d| < a>cAb<d.
[a, b] U [c,d] = [min(a, c), max(b, d)].
[a, b] M [c,d] = [max(a, ), min(b, d)].

> >
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Example of lattice of intervals

For the set {0, 1,2}
[0..2]

071  [1.2]

070 [11] [2.2]

0
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Let Z be the lattice of integer intervals, and V a set of variables.
Then Box = [V - Z] is the abstract domain of box.

It treats constraints of the form
x<d x>d

where d € Z is a constant.
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Octagon abstract domain



Octagonal constraint

We call octagagonal constraint any constraint of the form
£x; — £x; < c with cis a constant from Z, Q or R.

We call octagon the set of points satisfying a conjuction of octagonal
constraints.

Remark
The name octagon comes from the fact that, in two dimensions, our
sets are polyhedra with at most eight sides.
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Potential constraints

We call potential constraint any constraint of the form x; — x; < c.
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Potential constraints

We call potential constraint any constraint of the form x; — x; < c.

A conjunction of potential constraints can be represented as a directed
graph G with nodes from (xg, ..., Xx,—1) and value in Z, Q or R.

For each ordered pair of variables x;, x; € V2, there will be an arc from
X to x; with weight c if the constraint x; — x; < cis in constraint
conjuction.
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Difference Bound Matrix

An equivalent representation for potential constraint conjuction is by
means of a Difference Bound Matrix (DBM).

A DBM m is a n x n square matrix where n is the number of variables.

The element at line /i, column jwhere 1 < i< n, 1 <j< n, denoted by
, equals to c if there is a constraint of the form in our
constraint conjunction and +oco otherwise.
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Difference Bound Matrix

An equivalent representation for potential constraint conjuction is by
means of a Difference Bound Matrix (DBM).

A DBM m is a n x n square matrix where n is the number of variables.

The element at line /i, column jwhere 1 < i< n, 1 <j< n, denoted by
, equals to c if there is a constraint of the form in our
constraint conjunction and +oco otherwise.

Remark

A DBM m can be seen as the adjacency matrix of a potential graph.
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Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.
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Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.

We will encode octagonal constraints on) as potential

constraints on V'.
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Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.

We will encode octagonal constraints on) as potential

constraints on V'.

Xi—X; < d o~ X — X, S d A Xy g — X < d

Xi+ x5 < d o~ Xoi = Xpjug S dA X — X1 < d

—Xj =X < d o X — X S AA X — X9 < d
X < d~ X; — X141 < 2d

_Xigdw)é;+1_)éi§2d
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Transformation of octagonal constraints

* In a potential constraint x5; will represent x; while x,; ; will
represent —Xx;.

= A conjuction of octagonal constraints on )V can be represented
as a DBM of dimension 2 x n.
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Example of transformation of octagonal system to potential

constraint system

X0§3
X1§2
xo+x1 <6
—xg—x1 <5H
—X0§3
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Example of transformation of octagonal system to potential

constraint system

X0§3
X1§2
xo+x1 <6
—xg—x1 <5H
—X0§3

How to translate this octagonal system and fill the DBM 7
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Example of transformation of octagonal system to potential

constraint system

%<3 % % % 4
xy <2 Xy | oo o0 oo o0

X +x1 <6 Xy |oo o0 o0 o0
—Xp—x1 <5 X, |00 00 00
—x0 <3 X, |00 00 00 o0
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Example of transformation of octagonal system to potential

constraint system

xo <3 Xp—X <6

S &K

g8 8 8 8|&
8 8 8 8|
g8 8 8 8%
8 8 8 8|

We apply x; < d ~ x5, — X511 <
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Example of transformation of octagonal system to potential

constraint system

X0§3 )(—)(§6

% X 4
X, |0 6 oo oo
X |00 o0 o0 o0
X, |00 00 00 0
X, oo o0 oo 00

We apply x; < d ~ x5, — X511 <
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Example of transformation of octagonal system to potential

constraint system

0 <3 X% =% <6 % X A 4
x1 <2 Xy — Xy < 4 X |00 6 oo o0
X |00 o0 o0 o0
X, |00 00 00 0
X, oo o0 oo 00

We apply x; < d ~ x5, — X511 <
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Example of transformation of octagonal system to potential

constraint system

U
g8 8 8 8|&
g 8 8 ofx
g8 8 8 8%
g =~ 8 8|

We apply x; < d ~ x5, — X511 <
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Example of transformation of octagonal system to potential

constraint system

<3 %% <6 % X A %
xp <2 Xy — x5 < 4 X, |oo 6 o0 o0
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo o0 0o
x| oo oo oo 4
X | oo 00 oo 00

We apply x;+x; < d~ Xy — X5 < dA X — X, < d
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Example of transformation of octagonal system to potential

constraint system

x0 <3 X —x; <6 O
<2 X — X, < 4 X |00 6 oo 6
X+x1<6 X, —xX.<6,X,—x <6 X, |oo o0 0o
X, oo 6 oo 4
X | oo 00 oo 00

We apply xi+ X < d~ xp; = X511 S dA Xy — X4 < d
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Example of transformation of octagonal system to potential

constraint system

<3 %% <6 % 4 % %
x1 <2 X — Xy < 4 Xy |oo 6 oo 6
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo o0 0o
—x—x1 <5 X[ —x<5x—x<5 X, | oo 6 oo 4
X | oo 00 oo 00

We apply  —xi =X < d~ X1 — X SdA Xy — X < d
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Example of transformation of octagonal system to potential

constraint system

%<3 %% <6 % X Ak
x1 <2 Xy — x5 < 4 Xy |oo 6 oo 6
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo oo 5 oo
—xg—x1<5 X —xX,<5 xX—x,<5 X, | oo 6 oo 4
X, | 5 00 00 o0

We apply  —xi =X < d~ X1 — X SdA Xy — X < d

19/40



Example of transformation of octagonal system to potential

constraint system

%<3 X% =% <6 % X A 4
x3 <2 Xy —x3 < 4 Xp|oo 6 oo 6
x+x1<6 x5—x3<6,x—x; <6 X;|oo oo 5 o0
—x—x1<5 X—x<5x5—x;<5 X |00 6 oo 4
—xp <3 X — X <6 X |5 o0 oo o0

We apply —x; < d~ X511 — X5, < 2d

19/40



Example of transformation of octagonal system to potential

constraint system

X <3 X% —x <6 X, X X% X
x3 <2 Xo— X3 < 4 Xy|oo 6 oo 6
Xo+x1<6 xj—x3<6,x—x<6 | 6 oo 5 oo
—x0—x1<5 X —x<5x5—x3<5 X |00 6 oo 4
—xp <3 X, —x, <6 X |5 o0 oo o0

We apply —x; < d~ X511 — X5, < 2d
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Example - Potential graph

What about the graph representation ?

X —x <6
/ / / J
X — x5 < 4 Xo X1 X X3
X=X <6,%—x <6 X|0©0 6 oo 6
X, —x <5, x—x<5 |6 oo 5 o0
X% =% <6 % |00 6 oo 4
|5 oo oo oo

®» ®
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Example - Potential graph

What about the graph representation ?

X —x <6 6
X — X < 4 X0 X X X
X=X <6 X—xX, <6 X |00 6 oo 6 @
X =¥ <5 x—x<5 X |6 oo 5 oo
X — % <6 5 | €8 s 4
X |5 oo oo o0

®»  ®
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Example - Potential graph

What about the graph representation ?

X—x <6 6
X — X < 4 X0 X X X
X=X <6,%—x<6 X | 6 oo 6 @ @
X =¥ <5 x—x<5 X |6 oo 5 oo
X%~ X <6 % oo 6 oo 4 0
X |5 oo oo o0

®»  ®
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Example - Potential graph

What about the graph representation ?

X —x3 <6 6
X — X < 4 X0 X X X
X=X <6,x%—x <6 X |00 6 oo 6 @ 0
X =¥ <5 x—x<5 X |6 oo 5 oo
X, —x <6 X | oo oo 4 6\ 0
X |5 oo oo o0

®»  ®
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Example - Potential graph

What about the graph representation ?

X—x <6 6
X — X < 4 X0 X X X
X=X <6,x%—x <6 X |00 6 oo 6 @ 0
X~ <5 x%—x<5 X |6 oo 5 o0
X —x <6 % | 00 o 4 0
X |5 o0 oo oo
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Example - Potential graph

What about the graph representation ?

X—x <6

6
X — X < 4 X0 X X X
X — %3 <6, %[0 6 o 6 @
X =¥ <5 x—x<5 X |6 oo 5 oo
X% <6 % o0 6 oo 4 6
%3 5 o0 oo o©
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Example - Potential graph

What about the graph representation ?

X—x <6
X% — % <4 0 x4 %
X=X <6,x—x<6 X |00 6 o0
X=X <5, —x<5 X |6 o 5
X —x <6 % | 00 oo
X |5 o0 o
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Some remarks about DBM

= mp3=my1 =0

0 % % L 4ox<6 %<6
X3 |00 6 o0 6
)(1 6 58 5 5% L X()—I—X1§67 X1+X0§6
X0 6 oo 4 = DBM operations should keep entries equal.
X% |5 o0 oo o0
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Coherence and Consistency

A DBM m is coherent iff Vijm;; = mj; where 7 = j+ 1 if j is even and
i — 1 otherwise.

Bar operator

The bar operation can be realised without a branch using 7= i& 1.
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Coherence and Consistency

A DBM m is coherent iff Vijm;; = mj; where 7 = j+ 1 if j is even and
i— 1 otherwise.

Bar operator

The bar operation can be realised without a branch using 7= i& 1.

A DBM m is consistent iff Vim;; > 0.

Negative cycle

Intuitively, consistency means that there is not negative cycle in the
DBM, which corresponds to unsatisfiability.

22/40



Let m and m’ two matrices of size N from two potential sets we can

define the order operator, denoted <, as

m<m iff m;; < mf-’j Vi,je N

Link with CP
The order allows for the removal of redundant constraints.
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Let m and m’ two matrices of size N from two potential sets we can

define the join operator as

mUm = {max (m,-_J-, mﬁ,j)i’j | i,je N}

Link with CP
Ll can be seen as the disjunction of constraints of the form
Xo + X1 S d.

24/40



Join - Example

Let m the matrix represented the constraint xg + x; < 5 and m’ the
matrix represented the constraint xp + x; < 7.

/ / / J / / J

X X % X XX % X% ‘ XX % X%

)/0 co oo 0o 5 X{) o oo o 7 >/0 oo oo o 7
X | 00 o0 oo oo X | oo 00 oo oo X | oo 00 o0 oo
x; o0 5) oo oo X; oo 7 oo oo X; oo 7 oo oo
X, | 00 oo o0 o0 X | oo o0 oo oo X | o0 o0 oo oo
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Let m and m’ two matrices of size N from two potential sets we can
define the meet operator as

mim = {min (mi, m?ﬁj)i’j | i,j € N}

Link with CP
I can be seen as the conjunction of constraints of the form
Xo+x1 < d.

Remark
The order m < m’ is equivalent to mMm' = mand m< m' is
equivalent to mU m' = m
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Meet - Example

Let m the matrix representing the constraint xg + x; < 5 and m’ the
matrix representing the constraint xo + x; < 7.

/ / / J / / J

‘ X X % X ‘ XX % X% ‘ XX % X%
)/0 co oo 0o 5 X{) o oo o 7 >/0 o oo o 5
X oo oo 00 oo [l X | oo oo oo = X |00 o0 o0 o0
x; o0 5) oo oo X; oo 7 oo oo X; oo 5) oo oo
X, | 00 oo o0 o0 X | oo o0 oo oo X | o0 o0 oo oo
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Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;
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Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;

= Floyd-Warshall algorithm
= Complexity of n® where n is the number of variables
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Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;

= Floyd-Warshall algorithm

= Complexity of n® where n is the number of variables

It is basically a loop computing n matrices, m! to m", as follows

def
mo = m

k def . k=1 , k—1 k—1 q 3
mi; = min(m ", m " +my0), if1<ijk<n

o def ) omi Wi

i 0, ifi=j

28/40



Example of application of the closure operator

1: function CLOSE(m)

2 for ke {0,...,2n — 1} do

3: foric {0,...,2n — 1} do

4: for je{0,...,2n — 1} do

5 m’; ; < min(m; ;,m; ; + myg ;)

6: end for
T: end for

8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.
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Example of application of the closure operator

1: function CLOSE(m) )/O )/1 )/2 )/3
2 for ke {0,...,2n — 1} do

3: foric{0,....2n — 1} do X o0 6 oo 6
4: for je{0,...,2n— 1} do x| 6 oo 5 o
5 m'; j — min(m; j, m; g + my ;)

6: end for )(2 ee & e 4
T end for X |5 oo oo 11
8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.
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Example of application of the closure operator

1: function CLOSE(m) )(0 )/1 )/2 )(3
2 for ke {0,...,2n — 1} do

3: foric {0,...,2n — 1} do )(0 06116
4: for je{0,...,2n— 1} do X,|6 0 5 9
5 m’; ; < min(m; ;,m; ; + myg ;)

6: end for? ! ! )(2 9 6 0 4
T end for X5 11 16 0
8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.
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Implicit constraints

For each node xi in turn, it checks, for all pairs (x;, xj), whether it would
be shorter to pass through x instead of taking the direct arc from x; to x;.

This also corresponds to adding the constraints
Xi—xk < cAxe—x < d
to derive the constraint (called implicit constraint)
xi—xi<c+d
The closure makes all implicit constraints explicit.



Implicit constraints

For each node xi in turn, it checks, for all pairs (x;, xj), whether it would
be shorter to pass through x instead of taking the direct arc from x; to x;.

X
min(my, mi + mg\_ 7

This also corresponds to adding the constraints
Xi—xk < cAxe—x < d
to derive the constraint (called implicit constraint)
xi—xi<c+d
The closure makes all implicit constraints explicit.
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Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3
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Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2

= xp+x <3
:
2 4 2

@@
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Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3

()
-

@ ™

% % A4 % X% % A4 %
X0 2 oo o o 2 oo 3
oo 0 oo o 00 00 0O 00
X000 o0 0 4 oo 3 oo 4
Xy | oo o0 oo 0 00O 00 00 00
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Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3

()
-

@ ™

% % A4 % X% % A4 %
X0 2 oo o 0 2 o 3
oo 0 oo o o 0 oo o
X000 o0 0 4 co 3 0 4
Xy | oo o0 oo 0 co oo oo 0
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Strong closure - Intuition

As explained before, Floyd-Warshall algorithm as performing local
constraints propagations of the form

X=X < cAX—x<d = X;—X, <c+d

on V'’ until no further propagation can be done.
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Strong closure - Intuition

As explained before, Floyd-Warshall algorithm as performing local
constraints propagations of the form

X=X < cAX—x<d = X;—X, <c+d

on V'’ until no further propagation can be done.

The idea of strong closure is to add another step of local constraints
propagation.

X —

1

X

ScAX,—x<d = X —xX < (c+d)/2

1

such that X, = —x,

so mj; is replacing with min(m;j, (m;z + m;;)/2).

32/40



Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2
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Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

X |oo 2 o0 o0 X |oo 2 oo 3
Xh|oo o0 oo X, |00 00 00 0
X0 o0 oo 4 X oo 3 oo 4
Xy |00 00 o0 00 Xy |00 00 o0 o0
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Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

X0 2 oo 0 X |oo 2 oo 3
oo 0 oo o X, |00 00 00 0
X, lo00 3 0 4 X oo 3 oo 4
Xg | oo o0 oo 0 Xy |00 00 o0 o0
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Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

|0 2 ~ 0 X% |0 2 o 3
oo 0 oo o X |00 0 oo o
X |loco 3 0 4 X looc 3 0 4
Xg | oo o0 oo 0 Xy |00 oo oo 0

33/40



Product of abstract domain




Back to our example: three kinds of constraints in RCPSP

= octagonal constraints treated by octagon abstract domain.

= equivalence constraints treated in a specialized reduced
product.

= interval constraints treated by the PP abstract domain.

V(i< j) € Psi+di<s

Vje [1..n],Vie [1.n\{J}, bij<(si < sjAs; < si+ dy)

Vje [1..!7],!’/(7_,'4- Z ki * b,‘ﬁj < ck
i€[1..n\ {j}

34/40



We can define a direct product over PP x Oct as follows:

(p,o) U (p',0') = (pUpp p',0Uoct 0)
(Lelpe, [loct)
[l = ([€lpps Loct)  if [¢]oct is not defined
(Lpp, [€]oct)  if [¢]pp is not defined
refine((p, 0)) = (refine(p), refine(o))
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We can define a direct product over PP x Oct as follows:

(p,o) U (p',0') = (pUpp p',0Uoct 0)
(Lelpe, [loct)
[l = ([€lpps Loct)  if [¢]oct is not defined
(Lpp, [€]oct)  if [¢]pp is not defined
refine((p, 0)) = (refine(p), refine(o))

Issue: domains do not exchange information.
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Reduced product via equivalence constraints [Talbot et al.]

We can improve the refinement operator of the direct product by
connecting constraints from both domains via equivalence constraints.

= Let ¢1 < ¢ be an equivalence constraint where 1] pp and [p2] oct
are defined, then we have:

prope(p, 0,1 ¢ ¢2) =
pFrp 1 = (p,oU [p2]oct)
pFpp =1 = (p,oU [-w2]oct)
oFoct 2 = (pU [¢1]pp,0)
0Foct ~p2 = (pU[~p1]eep, 0)
(p, 0) otherwise

= Result: A generic reduced product to combine abstract domains
with disjoint set of variables.
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Experiments




Instances & Environment

= 2040 instances
= from XCSP3 world

= STP instances (so RCPSP with only the precedence constraints)
= 120 variables
= Precision 7780 13th Gen Intel(R) Core(TM) i9-13950HX

= Timeout of 20 seconds
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Octagon vs PC

Time

Comparison of Octagon and PC Solvers
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Octagon vs PC
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Conclusion




Conclusion

= RCPSP problem and this modelization

= Different abstract domains — Octagon abstract domain with these
operators and this representation

= Based on these concepts, we model the RCPSP problem using
abstract domains.

= Some experiments
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