Octagon Abstract Domain

Session 6

Thibault Falque
Abstract Interpretation Workshop — 20th June 2024

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

1. Introduction

2. Abstract domain

3. Octagon abstract domain
4. Product of abstract domain
5. Experiments

6. Conclusion

1/40

Introduction

Abstract constraint programming

BRUTE-FORCE DYNAMIC

SOL-UTION: PROGRAMMING SELUNG ON EBAY:
oY) ALGORITHMS: o(,)
. 0 (n*2")
STILL WORKING
ON YOUR ROUTE?
AN

~
SHUT THE
HEW UR

2/40

Abstract constraint programming

BRUTE-FORCE DYNAMIC

SOLUTTON: PROGRAMMING SELUNG ON ERAY:
oY) ALGORITHMS: o(r)
. 0 (n*2")
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE

HEW vk

Why?

= A framework for combining constraint solvers
= Constraint solving on GPUs

2/40

Constraint programming

= Constraint programming: we only specify what should be the
solution using relations on variables (declarative programming).

3/40

Constraint programming

= Constraint programming: we only specify what should be the
solution using relations on variables (declarative programming).
= But we do not program how to compute the solution.

3/40

An exemple of constraint problem

—— Task 1

—— Task 2

——— Task 4

— Task 5

= Constraint problem: Tasks have a duration, use resources
(#CPU/#GPU), and have precedence relations.
= Goal: Find a minimal schedule of the tasks on the HPC.

4/40

Scheduling problem RCPSP

NP-complete optimisation problem:

= T is a set of tasks, d; € N the duration of task i.

= P are the precedences among tasks: i < j € P if i must terminate
before j starts.

= Ris a set of resources where k € R has a capacity ¢, € N.

= Each task i uses a quantity ri ; of resources k.

5/40

Scheduling problem RCPSP

NP-complete optimisation problem:

= T is a set of tasks, d; € N the duration of task i.

= P are the precedences among tasks: i < j € P if i must terminate
before j starts.

= Ris a set of resources where k € R has a capacity ¢, € N.

= Each task i uses a quantity ri ; of resources k.

Goal: find a (minimal) planning of tasks T that satisfies precedences in P
without exceeding the capacity of available resources.

5/40

Example with 5 tasks and 2 resources

Resources consumption

@ capadity |1
5)
& capadgity |
3]
2
1
0

0 1 2 3 4 5) 6 7 8
Time units

(3.3) (1.0)

Tz n T3

0 1 2 3 4 5) 6 7 8
Time units

6/40

CSP & COP

A constraint satisfaction problem is a tuple P = (X, D, C)
where:

a finite set of variables, denoted by X

D; € D the set of values taken by each variable x; € X

a finite set of constraints, denoted by C, each covering a sub-set of
X such as Ve €, scope(c) C X.

7/40

CSP & COP

A constraint satisfaction problem is a tuple P = (X, D, C)

where:

a finite set of variables, denoted by X
D; € D the set of values taken by each variable x; € X
a finite set of constraints, denoted by C, each covering a sub-set of

X such as Ve €, scope(c) C X.

A constraint optimization problem is a tuple P = (X, D, C, O)

where:

a finite set of variables, denoted by X
D; € D the set of values taken by each variable x; € X
a finite set of constraints, denoted by C, each covering a sub-set of

X such as Vc €, scope(c) C X.

an objective function O = obj(X) to be maximized or minimized 7/40

Constraints model [Schutt et al.]

= Variables : s; € {0..h — 1} is the starting time of task i.
= Constraints :
V(ii<j)€EP, si+d <s (1)
Vje [1..n], Vie [1.n)\ {/},
b;’j@(S;SSj/\Sj< S,'+d,')

Vielon], nj+(> rixbij) < (3)
ie[L.-m\{j}

1. Temporal constraints (eq. 1)

2. Resources constraints (eq. 2 and 3): tasks decomposition of global
constraint cumulative.

8/40

Abstract domain

Abstract domain

An abstract domain (Abs, <,Ul, T,~, [.], refine, split) is a lattice such that:

= Abs is a set of elements representable in a machine.

= < is a partial order.

= || performs the join of two elements (“union of information™).

= [is the largest element (“initial state”).

= ~:A— D’ is a monotone concretization function.

= state : Abs — K gives the state of an element (K = { true, false,
unknown }).

s [.]:® — Absis a partial interpretation function turning a constraint into
an element of the abstract domain.

= refine: Abs — Abs is an extensive function, e.g., a < refine(a), refining an
abstract element (“gain information”).

= split: Abs — P(Abs) is an extensive function dividing an abstract element
into a set of sub-elements.

= = Abs x ®: 2k ¢ holds whenever v(a) C [¢]” the deduction relation,

called the ‘entailment”. 9/40

Interval

An interval is a pair (/, u) € Z? of the lower and upper bounds, written
[/, u].

The lattice of interval (Z,C, LI, M, L, [—o0, 00]) is defined as:
T 2 {[a,b]|a€ ZU{—o0},be ZU{oo},aC blU{L}
with the following operations:

[, Cc,d| < a>cAb<d.
[a, b] U [c,d] = [min(a, c), max(b, d)].
[a, b] M [c,d] = [max(a,), min(b, d)].

> >

10/40

Example of lattice of intervals

For the set {0, 1,2}
[0..2]

071 [1.2]

070 [11] [2.2]

0

11/40

Let Z be the lattice of integer intervals, and V a set of variables.
Then Box = [V - Z] is the abstract domain of box.

It treats constraints of the form
x<d x>d

where d € Z is a constant.

12/40

Octagon abstract domain

Octagonal constraint

We call octagagonal constraint any constraint of the form
£x; — £x; < c with cis a constant from Z, Q or R.

We call octagon the set of points satisfying a conjuction of octagonal
constraints.

Remark
The name octagon comes from the fact that, in two dimensions, our
sets are polyhedra with at most eight sides.

13/40

Potential constraints

We call potential constraint any constraint of the form x; — x; < c.

14/40

Potential constraints

We call potential constraint any constraint of the form x; — x; < c.

A conjunction of potential constraints can be represented as a directed
graph G with nodes from (xg, ..., Xx,—1) and value in Z, Q or R.

For each ordered pair of variables x;, x; € V2, there will be an arc from
X to x; with weight c if the constraint x; — x; < cis in constraint
conjuction.

14/40

Difference Bound Matrix

An equivalent representation for potential constraint conjuction is by
means of a Difference Bound Matrix (DBM).

A DBM m is a n x n square matrix where n is the number of variables.

The element at line /i, column jwhere 1 < i< n, 1 <j< n, denoted by
, equals to c if there is a constraint of the form in our
constraint conjunction and +oco otherwise.

15/40

Difference Bound Matrix

An equivalent representation for potential constraint conjuction is by
means of a Difference Bound Matrix (DBM).

A DBM m is a n x n square matrix where n is the number of variables.

The element at line /i, column jwhere 1 < i< n, 1 <j< n, denoted by
, equals to c if there is a constraint of the form in our
constraint conjunction and +oco otherwise.

Remark

A DBM m can be seen as the adjacency matrix of a potential graph.

15/40

Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.

16/40

Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.

We will encode octagonal constraints on) as potential

constraints on V'.

16/40

Transformation of octagonal constraints

From the set of variables V = (xo, ..., x,—1) we derive the set

V= (X, %)

Each variable x; € V has both a positive form x};, and a negative
form x5, ;.

We will encode octagonal constraints on) as potential

constraints on V'.

Xi—X; < d o~ X — X, S d A Xy g — X < d

Xi+ x5 < d o~ Xoi = Xpjug S dA X — X1 < d

—Xj =X < d o X — X S AA X — X9 < d
X < d~ X; — X141 < 2d

Xigdw)é;+1)éi§2d
16/40

Transformation of octagonal constraints

* In a potential constraint x5; will represent x; while x,; ; will
represent —Xx;.

= A conjuction of octagonal constraints on)V can be represented
as a DBM of dimension 2 x n.

17/40

Example of transformation of octagonal system to potential

constraint system

X0§3
X1§2
xo+x1 <6
—xg—x1 <5H
—X0§3

18/40

Example of transformation of octagonal system to potential

constraint system

X0§3
X1§2
xo+x1 <6
—xg—x1 <5H
—X0§3

How to translate this octagonal system and fill the DBM 7

18/40

Example of transformation of octagonal system to potential

constraint system

%<3 % % % 4
xy <2 Xy | oo o0 oo o0

X +x1 <6 Xy |oo o0 o0 o0
—Xp—x1 <5 X, |00 00 00
—x0 <3 X, |00 00 00 o0

19/40

Example of transformation of octagonal system to potential

constraint system

xo <3 Xp—X <6

S &K

g8 8 8 8|&
8 8 8 8|
g8 8 8 8%
8 8 8 8|

We apply x; < d ~ x5, — X511 <

19/40

Example of transformation of octagonal system to potential

constraint system

X0§3)(—)(§6

% X 4
X, |0 6 oo oo
X |00 o0 o0 o0
X, |00 00 00 0
X, oo o0 oo 00

We apply x; < d ~ x5, — X511 <

19/40

Example of transformation of octagonal system to potential

constraint system

0 <3 X% =% <6 % X A 4
x1 <2 Xy — Xy < 4 X |00 6 oo o0
X |00 o0 o0 o0
X, |00 00 00 0
X, oo o0 oo 00

We apply x; < d ~ x5, — X511 <

19/40

Example of transformation of octagonal system to potential

constraint system

U
g8 8 8 8|&
g 8 8 ofx
g8 8 8 8%
g =~ 8 8|

We apply x; < d ~ x5, — X511 <

19/40

Example of transformation of octagonal system to potential

constraint system

<3 %% <6 % X A %
xp <2 Xy — x5 < 4 X, |oo 6 o0 o0
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo o0 0o
x| oo oo oo 4
X | oo 00 oo 00

We apply x;+x; < d~ Xy — X5 < dA X — X, < d

19/40

Example of transformation of octagonal system to potential

constraint system

x0 <3 X —x; <6 O
<2 X — X, < 4 X |00 6 oo 6
X+x1<6 X, —xX.<6,X,—x <6 X, |oo o0 0o
X, oo 6 oo 4
X | oo 00 oo 00

We apply xi+ X < d~ xp; = X511 S dA Xy — X4 < d

19/40

Example of transformation of octagonal system to potential

constraint system

<3 %% <6 % 4 % %
x1 <2 X — Xy < 4 Xy |oo 6 oo 6
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo o0 0o
—x—x1 <5 X[—x<5x—x<5 X, | oo 6 oo 4
X | oo 00 oo 00

We apply —xi =X < d~ X1 — X SdA Xy — X < d

19/40

Example of transformation of octagonal system to potential

constraint system

%<3 %% <6 % X Ak
x1 <2 Xy — x5 < 4 Xy |oo 6 oo 6
Xo+x1<6 xjp—x53<6,x,—x<6 X, |oo oo 5 oo
—xg—x1<5 X —xX,<5 xX—x,<5 X, | oo 6 oo 4
X, | 5 00 00 o0

We apply —xi =X < d~ X1 — X SdA Xy — X < d

19/40

Example of transformation of octagonal system to potential

constraint system

%<3 X% =% <6 % X A 4
x3 <2 Xy —x3 < 4 Xp|oo 6 oo 6
x+x1<6 x5—x3<6,x—x; <6 X;|oo oo 5 o0
—x—x1<5 X—x<5x5—x;<5 X |00 6 oo 4
—xp <3 X — X <6 X |5 o0 oo o0

We apply —x; < d~ X511 — X5, < 2d

19/40

Example of transformation of octagonal system to potential

constraint system

X <3 X% —x <6 X, X X% X
x3 <2 Xo— X3 < 4 Xy|oo 6 oo 6
Xo+x1<6 xj—x3<6,x—x<6 | 6 oo 5 oo
—x0—x1<5 X —x<5x5—x3<5 X |00 6 oo 4
—xp <3 X, —x, <6 X |5 o0 oo o0

We apply —x; < d~ X511 — X5, < 2d

19/40

Example - Potential graph

What about the graph representation ?

X —x <6
/ / / J
X — x5 < 4 Xo X1 X X3
X=X <6,%—x <6 X|0©0 6 oo 6
X, —x <5, x—x<5 |6 oo 5 o0
X% =% <6 % |00 6 oo 4
|5 oo oo oo

®» ®

20/40

Example - Potential graph

What about the graph representation ?

X —x <6 6
X — X < 4 X0 X X X
X=X <6 X—xX, <6 X |00 6 oo 6 @
X =¥ <5 x—x<5 X |6 oo 5 oo
X — % <6 5 | €8 s 4
X |5 oo oo o0

®» ®

20/40

Example - Potential graph

What about the graph representation ?

X—x <6 6
X — X < 4 X0 X X X
X=X <6,%—x<6 X | 6 oo 6 @ @
X =¥ <5 x—x<5 X |6 oo 5 oo
X%~ X <6 % oo 6 oo 4 0
X |5 oo oo o0

®» ®

20/40

Example - Potential graph

What about the graph representation ?

X —x3 <6 6
X — X < 4 X0 X X X
X=X <6,x%—x <6 X |00 6 oo 6 @ 0
X =¥ <5 x—x<5 X |6 oo 5 oo
X, —x <6 X | oo oo 4 6\ 0
X |5 oo oo o0

®» ®

20/40

Example - Potential graph

What about the graph representation ?

X—x <6 6
X — X < 4 X0 X X X
X=X <6,x%—x <6 X |00 6 oo 6 @ 0
X~ <5 x%—x<5 X |6 oo 5 o0
X —x <6 % | 00 o 4 0
X |5 o0 oo oo

20/40

Example - Potential graph

What about the graph representation ?

X—x <6

6
X — X < 4 X0 X X X
X — %3 <6, %[0 6 o 6 @
X =¥ <5 x—x<5 X |6 oo 5 oo
X% <6 % o0 6 oo 4 6
%3 5 o0 oo o©

20/40

Example - Potential graph

What about the graph representation ?

X—x <6
X% — % <4 0 x4 %
X=X <6,x—x<6 X |00 6 o0
X=X <5, —x<5 X |6 o 5
X —x <6 % | 00 oo
X |5 o0 o

20/40

Some remarks about DBM

= mp3=my1 =0

0 % % L 4ox<6 %<6
X3 |00 6 o0 6
)(1 6 58 5 5% L X()—I—X1§67 X1+X0§6
X0 6 oo 4 = DBM operations should keep entries equal.
X% |5 o0 oo o0

21/40

Coherence and Consistency

A DBM m is coherent iff Vijm;; = mj; where 7 = j+ 1 if j is even and
i — 1 otherwise.

Bar operator

The bar operation can be realised without a branch using 7= i& 1.

22/40

Coherence and Consistency

A DBM m is coherent iff Vijm;; = mj; where 7 = j+ 1 if j is even and
i— 1 otherwise.

Bar operator

The bar operation can be realised without a branch using 7= i& 1.

A DBM m is consistent iff Vim;; > 0.

Negative cycle

Intuitively, consistency means that there is not negative cycle in the
DBM, which corresponds to unsatisfiability.

22/40

Let m and m’ two matrices of size N from two potential sets we can

define the order operator, denoted <, as

m<m iff m;; < mf-’j Vi,je N

Link with CP
The order allows for the removal of redundant constraints.

23/40

Let m and m’ two matrices of size N from two potential sets we can

define the join operator as

mUm = {max (m,-_J-, mﬁ,j)i’j | i,je N}

Link with CP
Ll can be seen as the disjunction of constraints of the form
Xo + X1 S d.

24/40

Join - Example

Let m the matrix represented the constraint xg + x; < 5 and m’ the
matrix represented the constraint xp + x; < 7.

/ / / J / / J

X X % X XX % X% ‘ XX % X%

)/0 co oo 0o 5 X{) o oo o 7 >/0 oo oo o 7
X | 00 o0 oo oo X | oo 00 oo oo X | oo 00 o0 oo
x; o0 5) oo oo X; oo 7 oo oo X; oo 7 oo oo
X, | 00 oo o0 o0 X | oo o0 oo oo X | o0 o0 oo oo

25/40

Let m and m’ two matrices of size N from two potential sets we can
define the meet operator as

mim = {min (mi, m?ﬁj)i’j | i,j € N}

Link with CP
I can be seen as the conjunction of constraints of the form
Xo+x1 < d.

Remark
The order m < m’ is equivalent to mMm' = mand m< m' is
equivalent to mU m' = m

26/40

Meet - Example

Let m the matrix representing the constraint xg + x; < 5 and m’ the
matrix representing the constraint xo + x; < 7.

/ / / J / / J

‘ X X % X ‘ XX % X% ‘ XX % X%
)/0 co oo 0o 5 X{) o oo o 7 >/0 o oo o 5
X oo oo 00 oo [l X | oo oo oo = X |00 o0 o0 o0
x; o0 5) oo oo X; oo 7 oo oo X; oo 5) oo oo
X, | 00 oo o0 o0 X | oo o0 oo oo X | o0 o0 oo oo

27/40

Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;

28/40

Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;

= Floyd-Warshall algorithm
= Complexity of n® where n is the number of variables

28/40

Closure

A DBM m is closed, and denoted by m* iff

Vi.m;’,- =0
Vi, j, kmi; <mj g+ my;

= Floyd-Warshall algorithm

= Complexity of n® where n is the number of variables

It is basically a loop computing n matrices, m! to m", as follows

def
mo = m

k def . k=1 , k—1 k—1 q 3
mi; = min(m ", m " +my0), if1<ijk<n

o def) omi Wi

i 0, ifi=j

28/40

Example of application of the closure operator

1: function CLOSE(m)

2 for ke {0,...,2n — 1} do

3: foric {0,...,2n — 1} do

4: for je{0,...,2n — 1} do

5 m’; ; < min(m; ;,m; ; + myg ;)

6: end for
T: end for

8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.

20/40

Example of application of the closure operator

1: function CLOSE(m))/O)/1)/2)/3
2 for ke {0,...,2n — 1} do

3: foric{0,....2n — 1} do X o0 6 oo 6
4: for je{0,...,2n— 1} do x| 6 oo 5 o
5 m'; j — min(m; j, m; g + my ;)

6: end for)(2 ee & e 4
T end for X |5 oo oo 11
8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.

20/40

Example of application of the closure operator

1: function CLOSE(m))(0)/1)/2)(3
2 for ke {0,...,2n — 1} do

3: foric {0,...,2n — 1} do)(0 06116
4: for je{0,...,2n— 1} do X,|6 0 5 9
5 m’; ; < min(m; ;,m; ; + myg ;)

6: end for? ! !)(2 9 6 0 4
T end for X5 11 16 0
8: end for

9: return m’

10: end function

Figure 1: Floyd-Warshall algorithm for computing
closure of a DBM.

20/40

Implicit constraints

For each node xi in turn, it checks, for all pairs (x;, xj), whether it would
be shorter to pass through x instead of taking the direct arc from x; to x;.

This also corresponds to adding the constraints
Xi—xk < cAxe—x < d
to derive the constraint (called implicit constraint)
xi—xi<c+d
The closure makes all implicit constraints explicit.

Implicit constraints

For each node xi in turn, it checks, for all pairs (x;, xj), whether it would
be shorter to pass through x instead of taking the direct arc from x; to x;.

X
min(my, mi + mg_ 7

This also corresponds to adding the constraints
Xi—xk < cAxe—x < d
to derive the constraint (called implicit constraint)
xi—xi<c+d
The closure makes all implicit constraints explicit.

30/40

Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3

31/40

Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2

= xp+x <3
:
2 4 2

@@

31/40

Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3

()
-

@ ™

% % A4 % X% % A4 %
X0 2 oo o o 2 oo 3
oo 0 oo o 00 00 0O 00
X000 o0 0 4 oo 3 oo 4
Xy | oo o0 oo 0 00O 00 00 00

31/40

Strong closure

Closure is not sufficient for obtaining canonical form of the DBM.

= Same octagon x; < 1A xp <2
=X+ x <3

()
-

@ ™

% % A4 % X% % A4 %
X0 2 oo o 0 2 o 3
oo 0 oo o o 0 oo o
X000 o0 0 4 co 3 0 4
Xy | oo o0 oo 0 co oo oo 0

31/40

Strong closure - Intuition

As explained before, Floyd-Warshall algorithm as performing local
constraints propagations of the form

X=X < cAX—x<d = X;—X, <c+d

on V'’ until no further propagation can be done.

32/40

Strong closure - Intuition

As explained before, Floyd-Warshall algorithm as performing local
constraints propagations of the form

X=X < cAX—x<d = X;—X, <c+d

on V'’ until no further propagation can be done.

The idea of strong closure is to add another step of local constraints
propagation.

X —

1

X

ScAX,—x<d = X —xX < (c+d)/2

1

such that X, = —x,

so mj; is replacing with min(m;j, (m;z + m;;)/2).

32/40

Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

33/40

Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

X |oo 2 o0 o0 X |oo 2 oo 3
Xh|oo o0 oo X, |00 00 00 0
X0 o0 oo 4 X oo 3 oo 4
Xy |00 00 o0 00 Xy |00 00 o0 o0

33/40

Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

X0 2 oo 0 X |oo 2 oo 3
oo 0 oo o X, |00 00 00 0
X, lo00 3 0 4 X oo 3 oo 4
Xg | oo o0 oo 0 Xy |00 00 o0 o0

33/40

Strong closure

A DBM m is strongly closed iff

m is closed
Vi, j-mj; < mjz;/2+mj;/2

|0 2 ~ 0 X% |0 2 o 3
oo 0 oo o X |00 0 oo o
X |loco 3 0 4 X looc 3 0 4
Xg | oo o0 oo 0 Xy |00 oo oo 0

33/40

Product of abstract domain

Back to our example: three kinds of constraints in RCPSP

= octagonal constraints treated by octagon abstract domain.

= equivalence constraints treated in a specialized reduced
product.

= interval constraints treated by the PP abstract domain.

V(i< j) € Psi+di<s

Vje [1..n],Vie [1.n\{J}, bij<(si < sjAs; < si+ dy)

Vje [1..!7],!’/(7_,'4- Z ki * b,‘ﬁj < ck
i€[1..n\ {j}

34/40

We can define a direct product over PP x Oct as follows:

(p,o) U (p',0') = (pUpp p',0Uoct 0)
(Lelpe, [loct)
[l = ([€lpps Loct) if [¢]oct is not defined
(Lpp, [€]oct) if [¢]pp is not defined
refine((p, 0)) = (refine(p), refine(o))

35/40

We can define a direct product over PP x Oct as follows:

(p,o) U (p',0') = (pUpp p',0Uoct 0)
(Lelpe, [loct)
[l = ([€lpps Loct) if [¢]oct is not defined
(Lpp, [€]oct) if [¢]pp is not defined
refine((p, 0)) = (refine(p), refine(o))

Issue: domains do not exchange information.

35/40

Reduced product via equivalence constraints [Talbot et al.]

We can improve the refinement operator of the direct product by
connecting constraints from both domains via equivalence constraints.

= Let ¢1 < ¢ be an equivalence constraint where 1] pp and [p2] oct
are defined, then we have:

prope(p, 0,1 ¢ ¢2) =
pFrp 1 = (p,oU [p2]oct)
pFpp =1 = (p,oU [-w2]oct)
oFoct 2 = (pU [¢1]pp,0)
0Foct ~p2 = (pU[~p1]eep, 0)
(p, 0) otherwise

= Result: A generic reduced product to combine abstract domains
with disjoint set of variables.

36/40

Experiments

Instances & Environment

= 2040 instances
= from XCSP3 world

= STP instances (so RCPSP with only the precedence constraints)
= 120 variables
= Precision 7780 13th Gen Intel(R) Core(TM) i9-13950HX

= Timeout of 20 seconds

37/40

Octagon vs PC

Time

Comparison of Octagon and PC Solvers

0.25 1

0.20 1

0.15

0.10

0.05 1

0.001

—8— pc
—&— octagon

T T T T T T T T
250 500 750 1000 1250 1500 1750 2000
Number of solved inputs

38/40

Octagon vs PC

0.25 1

0.20 1

0.15 1

cpu_time

0.101

0.05 4 .

0.00 4

40 60 80 100 120
number_of variables

39/40

Conclusion

Conclusion

= RCPSP problem and this modelization

= Different abstract domains — Octagon abstract domain with these
operators and this representation

= Based on these concepts, we model the RCPSP problem using
abstract domains.

= Some experiments

40/40

Octagon Abstract Domain

Session 6

Thibault Falque
Abstract Interpretation Workshop — 20th June 2024

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

Bibliography

Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace.
Why Cumulative Decomposition Is Not as Bad as It Sounds. In lan P.
Gent, editor, Principles and Practice of Constraint Programming - CP
2009, volume 5732, pages 746—761. Springer Berlin Heidelberg. ISBN
978-3-642-04243-0 978-3-642-04244-7. doi:
10.1007/978-3-642-04244-7 58. URL
http://link.springer.com/10.1007/978-3-642-04244-7_58.

Pierre Talbot, David Cachera, Eric Monfroy, and Charlotte Truchet.
Combining Constraint Languages via Abstract Interpretation. In 2019
IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), pages 50-58. IEEE. ISBN 978-1-72813-798-8. doi:
10.1109/ICTAI.2019.00016. URL
https://ieeexplore.ieee.org/document/8995453/.

40/40

http://link.springer.com/10.1007/978-3-642-04244-7_58
https://ieeexplore.ieee.org/document/8995453/

	Introduction
	Abstract constraint programming
	Constraint programming
	An exemple of constraint problem
	Scheduling problem RCPSP
	Example with 5 tasks and 2 resources
	CSP & COP
	Constraints model [@schuttWhyCumulativeDecomposition2009]

	Abstract domain
	Abstract domain
	Interval
	Example of lattice of intervals
	Box

	Octagon abstract domain
	Octagonal constraint
	Potential constraints
	Difference Bound Matrix
	Transformation of octagonal constraints
	Transformation of octagonal constraints
	Example of transformation of octagonal system to potential constraint system
	Example of transformation of octagonal system to potential constraint system
	Example - Potential graph
	Some remarks about DBM
	Coherence and Consistency
	Order
	Join
	Join - Example
	Meet
	Meet - Example
	Closure
	Example of application of the closure operator
	Implicit constraints
	Strong closure
	Strong closure - Intuition
	Strong closure

	Product of abstract domain
	Back to our example: three kinds of constraints in RCPSP
	Basic product
	Reduced product via equivalence constraints [@talbotCombiningConstraintLanguages2019]

	Experiments
	Instances & Environment
	Octagon vs PC
	Octagon vs PC

	Conclusion
	References

