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Background



Some of Neural Network Applications - Image Generator

prompt: a cat is using laptop with beer



Some of Neural Network Applications - ChatGPT

who are you?

@  1am ChatGPT, an Al language model created by OpenAl. | am based on the GPT-4 architecture and
designed to assist with a wide range of tasks, including answering questions, providing
explanations, generating text, and more. How can | assist you today?

Why is the sky blue?

@  The sky appears blue due to a phenomenaen called Rayleigh scattering. This effect occurs because
the molecules and small particles in the Earth's atmosphere scatter sunlight in all directions.
Here's a more detailed explanation:

1. Sunlight Composition: Sunlight, or white light, is made up of many different colors of light,
each with its own wavelength. These colors range from violet and blue, which have shorter
wavelengths, to red and orange, which have longer wavelengths.



Some of Neural Network Applications - Self-driving car
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The Limitation of Neural Network - Robustness Issue

cat

pig




The Limitation of Neural Network - Robustness Issue
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The Limitation of Neural Network

Why robustness issue important?
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Other Applications about Robustness Issue - NLP

Task: Sentiment Analysis. Classifier: CNN.  Original label: 99.8% Negative. Adversarial label: 81.0% Positive.

Text: | love these awful awf ul 80's summer camp movies. The best part about "Party Camp" is the fact that it Hiterally
literaly has re No plot. The eliches clichs here are limitless: the nerds vs. the jocks, the secret camera in the girls locker
room, the hikers happening upon a nudist colony, the contest at the conclusion, the secretly horny camp administrators,
and the embarrassingly embarrassingly feelish foOlish sexual innuendo littered throughout. This movie will make you
laugh, but never intentionally. | repeat, never.

Task: Sentiment Analysis. Classifier: Amazon AWS. Original label: 100% Negative. Adversarial label: 89% Positive.

Text: | watched this movie recently mainly because | am a Huge fan of Jodie Foster's. | saw this movie was made right
between her 2 Oscar award winning performances, so my expectations were fairly high. Unfertunately UnfOrtunately, |
thought the movie was terrible terribie and I'm still left wondering how she was ever persuaded to make this movie. The
script is really weak wea k.

Task: Toxic Content Detection. Classifier: LSTM. Original label: 96.7% Toxic. Adversarial label: 83.5% Non-toxic.

Text: hello how are you? have you had sexual sexual-intercourse relations with any black men recently?

Task: Toxic Content Detection. Classifier: Perspective. Original label: 92% Toxic. Adversarial label: 78% Non-toxic.

Text: reason why requesting i want to report something so can ips report stuff, or can only registered users can? if only
registered users can, then i 'll request an account and it 's just not fair that i cannot edit because of this anon block shit
shti c'mon, fueking fuckimg kell helled. 1

ILi et al. (2018). Textbugger: Generating adversarial text against real-world
applications. arXiv preprint arXiv:1812.05271.



Other Applications about Robustness Issue - Speech Recogni-

tion
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2Wang et al. (2020, October). Adversarial examples attack and countermeasure for

speech recognition system: A survey. In International Conference on Security and
Privacy in Digital Economy.




Other Property: Safety Issue
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3Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. In Computer Aided Verification: 29th International Conference, CAV 2017.
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Neural Network Verification



Definition of Neural Network

Neural Networks:
e Inspired by animal brain.
e A graph where each node performs an operation.

e The shape of graph, call the architecture.
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Definition of Neural Network

X
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1. Input Layer

each node represents as a feature.
2. Hidden Layers

transformation from input to output.
3. Output Layer

classification or prediction result.
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Definition of Neural Network

Input Hidden Hidden Output

Training a neural network:
e Given:
Training data
e Variables:
Weights, Biases, Output
e Objective:

Maximize accuracy 4




Definition of Neural Network Verification

0120.5?

e Given:
Weights, Biases

e Variables:
Each neuron

e Objective:
Check if property is satisfied
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Definition of Neural Network Verification

1. Neural Network (N := R™ — RoU")

2. Pre-conditions (X))
Define the specific input region
—1<x<5

3. Post-conditions (¢)
Define the expected result corresponding to input region
y=3

N(x) o, Vx e X (1)
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Example - NNV on Robustness Property

1. Neural Network (N := R?8x28 _; R10)

2. Pre-conditions (x' € X)
I = Xjllp < €

3. Post-conditions
Suppose y is true label for x, argmax N(x')

y
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How is this research field growing?

Keywords: "neural network verification”

Trends in Neural Network Verification
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How to check all perturbed images in L,-norm region?

Definition (Soundness)

for every program p € L, analysis(p) = true = p satisfies &

Definition (Completeness)

for every program p € L, analysis(p) = true <= p satisfies &

4Rival, X., & i, K. (2020). Introduction to static analysis: an abstract interpretation
perspective. Mit Press.
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How to check all perturbed images in orm region?

Verifying properties in deep neural networks with ReLUs is NP-Complete®

e Enumeration:
Enumerate all perturbed images in X

5Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. CAV 2017.
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How to check all perturbed images in L,-norm region?

Verifying properties in deep neural networks with ReLUs is NP-Complete®

e Enumeration:
Enumerate all perturbed images in X

e Attack:
Find adversarial example — Complete, Unsound

5Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. CAV 2017.
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How to check all perturbed images in orm region?

Verifying properties in deep neural networks with ReLUs is NP-Complete®

e Enumeration:
Enumerate all perturbed images in X

e Attack:
Find adversarial example — Complete, Unsound

e Formal Verification - Abstract Interpretation — Sound

5Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. CAV 2017.
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How to check all perturbed images in L,-norm region?

Verifying properties in deep neural networks with ReLUs is NP-Complete®

e Enumeration:
Enumerate all perturbed images in X

e Attack:
Find adversarial example — Complete, Unsound

e Formal Verification - Abstract Interpretation — Sound

e Formal Verification - Abstract Interpretation — Incomplete

5Katz et al. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. CAV 2017.
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How can we verify neural networks?

Neural Network Verification

Branch and Bound

Abstract Interpretation Decomposition Linear Programming

Interval Domain

[ —— Lagrangian Dual

Zonotope Domain Triangle Relaxation

Polyhedron Domain

Precision vs Scalability
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Incomplete Verification - Abstract
Interpretation



Concrete Semantic




Verifying Feed-forward Neural Network

0120.5?

e Given:
Weights, Biases
e Variables:

Each neuron
e Objective:
Check if property is satisfied

Concrete Semantic:
The all possible values for the neuron.

21




Feed-forward Neural Network - Concrete Semantic

Given:
1§X1§2,2§X2§3

1. Weighted Sum: f(xq,...,xp) = D>, WjX;
h1 = 0.8x1 + (—0.7)x
h2 = 0.6X1 + O.5X2

o1 = —la; + 0.4a;

2. ReLU: f;(x) = max(0, x)
a; = max(0, hy)

a, = max(0, hy) 2



Abstract Semantic




Interval Domain




Interval Lattice

Definition
The lattice of interval (Z,C, U, M, L, [—o0, 00]) is defined as:

T = {[a,b] |a€ ZU{~x},bEZU{o0},aC byU{L}
with the following operations:

e [a,b|C[c,d]ea>cAb<d.
e [a,b]U[c,d] = [min(a,c), max(b,d)].
e [a,b]M[c,d] £ [max(a,c), min(b,d)].

[I>

We also define projection functions |[a, b]| = a and [[a, b]] £ b.



Interval Domain - Basic Operators

Li=[-35 =24

e Addition
Th+1I, = [*3+2,5+4] = [*1,9]

e Subtraction
i —I,=[-3-2,5—-4]=[-5,1]

e Multiplication

Ty X I, = [min(B), max(B)] = [-12,20]
, where B={-3x2,-3x4,5x25x4}

24



Interval Domain - Basic Operators

7, =[-3,5], Zo = [2, 4]

e Jain
7y UZy = [min(—3,2), max(5,4)] = [-3, 5]

o Meet
Ty NI = [max(—3,2), min(5,4)] = [2, 4]
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Feed-forward Neural Network - Abstract Operations

RelLU

[1.2]

0120.5?

[2,3] RelU

Abstract Transformer:
1. Weighted Sum:
fs#([/b ul]’ 0000 [Im un]) = [Z: /i/’ Zi u:/'

where I = min(w;/;, w;u;) and vl = max(w;l;, w;u;)
2. RelLU:
(1, u]) = [max(0, /), max(0, u)]

26



e pre-conditions
1 S X1 S 2
2 S X2 S 3

e post-conditions
01 > 0.5

e Fully Connected & RelU activation function

27



Example - Interval Domain - Input Layer

2 [ x hi RelU

0120.5?

23 xe RelU

By pre-conditions:

x1=[1,2], x2 = [2,3]
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Example - Interval Domain - Hidden Layer

hi RelU

1.2

012057

[2,3] h2 RelLU

From Input Layer:
X1 = [1,2], Xo = [2,3]

Abstract Affine Function:
hy =0.8 x [1,2] + (—0.7) x [2,3] =[-1.3,0.2]
h, =0.6 x [1,2] + 0.5 x [2,3] = [1.6,2.7]
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Example - Interval Domain - Activation Layer

al

012057

a2

From Hidden Layer:
hy =[-1.3,0.2], h, =[1.6,2.7]

Abstract ReLU Activation Function:
a; = [ReLU(—1.3), ReLU(0.2)] = [0,0.2]
a, = [ReLU(1.6), ReLU(2.7)] = [1.6,2.7]

30



Example - Interval Domain - Output Layer

ol o1 >0.5?

From Activation Layer:
d]p = [0,02], dy = [16,27]

Abstract Affine Function:
01 =—-1x10,0.2] + 0.4 x [1.6,2.7] = [0.44,1.08]

UNPROVED!
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Summary of Interval Domain

Definition (Soundness)

for every program p € L, analysis(p) = true = p satisfies &

Definition (Completeness)

for every program p € L, analysis(p) = true <= p satisfies &

Is the property really not satisfied for this neural network?



Zonotope Domain



Extended Interval Domain - Zonotope Domain

Definition (Abstraction - Affine Expression)
a(x)=Z=c+3;dy;, cdeR, ye[-11]
.\Where c is center, y; is generator

Definition (Concretization)
NZ)=le=2;ldilie+2;1dl]

a(x)=Z=1+43y; — 2y
Y(Z)=[1-3-2,1+3+2]=[-4,6]



Zonotope Domain - Basic Operators

Z1=34+y1—-2y, Zo=1—y1+3y

e Addition
Z1+ 2, =34y —2v+1—y1+3y»
=4+

e Subtraction
Z1-2=3+y1 -2y, — (1 —y1+3y2)
=2-+2y; — 5y

e Multiplication
Zl X ZQ = (3—|—y1 —2_)/2) X (1—y1 —|—3y2)
=3—2y1 + Ty2 + 5y1y2 — y? — by3
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Zonotope Domain - Basic Operators

Definition 1. The join operation 2 = £ Uq defines an upper bound of & and 7,
which is minimal in “generic” situations, and whose interval concretisation is
the union of interval concretisations of & and 9 :

af = mid(y(2) U~v(9)) (central value of Z)

of = argmin (laf), Vi > 1 (coeff. of €;)
min(a?,a?)<a<maz(a?,a?)

B = sup(v(2) U~(9)) — af — 2121 o5 (coeff. of ev)

where the vy function returns the interval concretisation of an affine form and
mid([a,b]) := 3(a+b) and argmin(|z|) := {x € [a,b], |z| is minimal }.
a<lz<b

P=3+4a +20) g=1-2e+6) _ (2U§=2  +e +3e

=0 +e€; +ea 4=0+€ e T \aUG =0 46 +es

2 R —
2 4 6 -2 1 4 75\\\ 2 /’/ 6

~2 —2 \_ et

6Ghorbal et al. (2009). The zonotope abstract domain taylorl+. In Computer Aided

Verification: 21st International Conference, CAV 2009.
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Zonotope Domain - Neural Network Operators

Abstract Transformer:
1. Weighted Sum:

f;#(zh ooog Zn) = Zi W,'Z,'
=2 wi(ci + diiyji)
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Zonotope Domain - Neural Network Operators

7] ]
G=Ad+us-(1-N) g=A (- L)
G=X-3
L, o, . L u z
@0< A< o () e <A<

Figure 1: Two zonotope approximations for the ReLU function parameterized by the slope A.

2. RelLU:
Z if Iz>0
0 if uz <0
#(2) - e

AZ + 1+ [ynew Otherwise

— uz __—uzXlz
, Where \ = el Ul vy prissy

"Singh et al. (2018). Fast and effective robustness certification. Advances in neural
information processing systems, 31.
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e pre-conditions
1 S X1 S 2
2 S X2 S 3

e post-conditions
01 > 0.5

e Fully Connected & RelU activation function

38



Example - Zonotope Domain - Input Layer

08 /—\
n2 | x » hi RelU

o1 >0.5?

23] [ x2 ¥ h2 ReLU

x1 =15+0.5);
Xo = 2.5 + 05y2
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Example - Zonotope Domain - Hidden Layer

1,2 h1 RelLU

o1 2>0.5?

23] h2 RelLU

From Input Layer:

x1 = 1.5+ 0.5y, o =25+ 0.5

Abstract Affine Function:

h1 = 0.8 x x1 + (—07) X Xp
=0.8 x (1.5+0.5y1) + (—0.7) x (2.5 4 0.5y»)
= —0.55+ 0.4y; — 0.35y»

Concretization:
[-1.3,0.2]
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Example - Zonotope Domain - Hidden Layer

1.2 h1 RelU

o1 2>0.5?

23] h2 RelU

From Input Layer:
x1 =15+0.5y1, X2 =25+ 0.5y,

Abstract Affine Function:

h, = 0.6 X x; + 0.5 X xo
=0.6 x (1.5+0.5y1) + 0.5 x (2.5 + 0.5y»)
=2.154+0.3y; + 0.25)»

Concretization:
[1.6,2.7]
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Example - Zonotope Domain - Activation Layer

al

o1 2>0.5?

a2

From Hidden Layer:
hy = —0.55 + 0.4y; — 0.35y,, [—1.3,0.2]

Abstract ReLU Activation Function:

a; = 0.13 x (—0.55 + 0.4y; — 0.35y,) + 0.087 + 0.087y3
= —0.0715 4 0.052y; — 0.0455y, + 0.087 + 0.087y3
= 0.0155 + 0.052y; — 0.0455y, + 0.087y3

Concretization:
[-0.169,0.1995]
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Example - Zonotope Domain - Activation Layer

m RelU

al

[1.2]

\ 4

012>0.5?

RelLU

[2,3] a2

Y

N

From Hidden Layer:
hy = 2.15+ 0.3y; + 0.25y», [1.6,2.7]

Abstract ReLU Activation Function:
dpy = h2 =N[I5 + 03y1 + 025y2

Concretization:
[1.6,2.7]
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Example - Zonotope Domain - Output Layer

ol o1 >0.5?

From Activation Layer:
a; = 0.0155 4 0.052y; — 0.0455y, + 0.087y3
ay = 2.15 + 0.3y1 alx 0.25y2

Abstract Affine Function:
o0=—-1xa;+04xa
= —1 x (0.0155 + 0.52y; — 0.0455y, + 0.087y3)
+0.4 x (2.15 4+ 0.3y + 0.25y»)
= 0.8445 + 0.068y; + 0.1455y, — 0.087y3

Concretization:
[0.544,1.145], PROVE! 44



Summary of Zonotope Domain

e Extend from interval domain.
e More precise than interval domain.

e Implicitly describe dependency between different neurons.
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Other Operators in Neural Networks

e Layer types
1. Convolutional
2. Residual
3. ..
e Activation functions
1. Sigmoid
2. Tahn

46



Verification of Neural Network Competition (VNN-COMP)

The 5th International Verification of Neural Network Competition
(VNN-COMP'24)

The 7th International Symposium on Al Verification (SAIV'24)

The 36th International Conference on Computer Aided Verification (CAV'24)

€ ONNX
VNN-LIB

Verification of Neural Networks

47



Performance in VNN-COMP

Table 3: Overview of all scored benchmarks.

Category Benchmark Application Network Types # Params  Effective Input Dim
} Tmage Ceneration . . . R . -
CGAN & o Drediction Jomplex (Conv. + Vision Transformer) 500k - 68M 5
) Dataset Indexing . -
Complex NN4Sys & Cardimality Prodiction Complex (ReLU + Sigmoid) 33k - 37TM 1-308
mldacopf Power System Complex (ReLU + Trigonometric + Sigmoid)  4k-680k 22 - 402
ViT Vision Conv. + Residual + Softmax + BatchNorm 68k - 76k 3072
Collins RUL CNN Condition Based Maintenance Conv. + ReLU, Dropout 60k - 262k 400 - 800
CNN -
& FeaNot VGGNet16 Tmage Classification Conv. + ReLU + MaxPool 138M 150k
Traffic Signs Recognition Tmage Classification Conv. + Sign + MakPool + BatchNorm 905k - 1.7M 2.7k - 12k
Two-Level Lattice NN ] .
TLL Verify Bench Two-Level Lattice NN (KC. + ReLU) 17k - 67M 2
FC Acas XU Collision Detection FC. + ReLU 13k 5
Dist Shife Distribution Shift Detection FC. + ReLU + Sigmoid 342k - 855k 792
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Conclusion



Conclusion

e Introduced neural network verification

e Demonstrated how to use different abstract domains to verify neural

network

Welcome to join this research field!

49



Thanks for your attention!

Q&A



Online Resources

e A Tutorial Website

e Stanford Seminar - Recent progress in verifying neural networks,
Zico Kolter

e AAAI 2022 Tutorial: " Formal Verification of Deep Neural Networks:
Theory and Practice”
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https://neural-network-verification.com/
https://www.youtube.com/watch?v=Ma2rKDu-714
https://www.youtube.com/watch?v=Ma2rKDu-714
https://www.youtube.com/watch?v=-EKQhkMHWVU&t=1642s
https://www.youtube.com/watch?v=-EKQhkMHWVU&t=1642s
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