Parallel Lattice Programming

SESSION 8—PARALLEL LATTICE PROGRAMMING

Pierre Talbot
pierre.talbot@uni.lu

21th June 2024

University of Luxembourg

UNIVERSITE DU
LUXEMBOURG

What in this presentation?

We are going to overview two parallel programming models:

1. Pessimistic Parallel Programming (state of the art).

2. Optimistic Parallel Programming (contribution).

Characteristics of our model

e Lock-free and correct.
e Based on fixpoint over lattices.

e Useful for programming parallel constraint solvers.

Pessimistic Parallel Programming

Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of
all local max (reduce).

e Map:

8 2 10 23 2 7 91 1 0 0 42 11 8 1 32

v v ~

Thread 1, my =23 Thread 2, my =91 Thread 3, ms = 42

e Reduce: max([23,91,42]) = 91.

Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of
all local max (reduce).

e Map:

8 2 10 23 2 7 91 1 0 0 42 11 8 1 32

v v ~

Thread 1, m; = 23 Thread 2, m; = 01 T & i =42
e Reduce: max([23,91,42]) = 91.

Sequential bottleneck: With 100 elements (10 threads), the reduce
step takes as much time as the map step.

How to program the reduce step in parallel?

Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = datal[tid];
}
}

Then you run:

*m = MIN_INT,;
max (0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

Parallel max

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = datal[tid];
}
}

Then you run:

*m = MIN_INT,;
max (0, data, m) || ... || max(n-1, data, m)

where p || q is the parallel composition.

Good? No! Data-race.

Parallel max fixed!?

/%% Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (datal[tid] > *m) {
lock(m) {
*m = datal[tid];
}

Parallel max fi

/%% Suppose as many threads as elements in ‘data‘. */
void max(int tid, const int* data, int* m) {
if (datal[tid] > *m) {
lock(m) {
*m = datal[tid];
}
}
}

Good? No!

Can produce wrong results.

Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if(dataltid] > *m) {
*m = datal[tid];
}
}
}

Parallel max fixed again!?

/*x Suppose as many threads as elements in ‘data‘. x/
void max(int tid, const int* data, int* m) {
lock(m) {
if(dataltid] > *m) {
*m = datal[tid];
}
}
}

Good? Yes!
But our “parallel” algorithm is now

sequential.

OKayish in a map-red context

Not that bad if each thread performs work on datal[tid] and “desynchronize”.

void map_then_max(int tid, const int* data, int* m) {
int r = f(dataltid]l);

lock(m) {
if(r > *m) {
*m = r;
}
}

}

Still, locks are expensive.

Atomics to the rescue (?)

C++11 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.max (datal[tid]);
}

Atomics to the rescue (?)

C++11 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
m.max(dataltid]);
}

std: :atomics does not provide a max

function.

Atomics to the rescue...

C++11 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {
int prev_max = m;
while(prev_max < datal[tid] &&
Im.compare_exchange_weak (prev_max, datal[tid]))

{3

Finally OK using a compare-and-swap operation.

The problem with threads

Multithreading programming is pessimistic.

For a data race that happens once in million instructions, this model:

e Makes parallel programming painful and difficult.
e Slows down computation.

e Prevents us from thinking with a true parallel mindset.

Optimistic Parallel Programming

Let’s be optimistic

Instead of being afraid of data races, let's welcome them as part of the
programming model itself.

void max(int tid, const int* data, int* m) {
if (dataltid] > *m) {
*m = data[tid];
T
}

What happens in case of a data race?

e Suppose two threads with data = [1, 2].
e |f a data race occurs, *m ==

e But if we run max again, then we must obtain *m == 2.

Let's do extra work only when data races occur
(optimistic)

In case of n data races, we run the algorithm n+ 1 times:

int old = *m + 1;

while(old != *m) {
max(0, data, m) || ... || max(n-1, data, m);
old = *m;

}

This is called the fixed point loop.

11

Fixing optimistic max in parallel

However, for other reason than data races, we still need atomic load and
store:

void max(int tid, const int* data, std::atomic<int>& m) {
if (data[tid] > m.load()) {
m.store(dataltid]);
}
}

Note that, we only need atomic load and store, every other operation can
be performed non-atomically.

12

C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.
It provides various data types and fixpoint loop:

e ZInc, ZDec: increasing/decreasing integers.

e BInc, BDec: Boolean lattices.

e VStore: Array (of lattice elements).

e IPC: Arithmetic constraints.

e GaussSeidelIteration: Sequential CPU fixed point loop.
e AsynchronousIteration: GPU-accelerated fixed point loop.
O soo0

void max(int tid, const int* data, ZInc& m) {
m.tell(data[tid]);
}

AsynchronousIteration::fixpoint (max) ;

0 https://github.com/lattice-land

13

https://github.com/lattice-land

Conclusion

Data races occur rarely, so we should avoid working so
much to avoid them.

Further properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)!.

e Correct: Proofs that P; Q = P||Q, parallel and sequential versions

produce the same results.
e Restartable: Stop the program at any time, and restart on partial data.
e Modular: Add more threads without fear of breaking existing code.

e \Weak memory consistency: Very few requirements on the underlying
memory model = wide compatibility across hardware, unlock

optimization.

Ihttp://hyc.io/papers/aaai2022.pdf
14

http://hyc.io/papers/aaai2022.pdf

Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2
X < 512 X 1

What are the possible outcomes?

15

Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2
X < 512 X 1

What are the possible outcomes? x =512, x =1 and... x =513,

Really? 5137

Assignment is not necessarily atomic. View x as an array of two bytes x[0]x[1]:

T2: x[0] < 0O
Ti: x[0] < 1 (x = 512)
T2: x[1] + 0
Ti: x[1] + 1 (x = 513)

But in practice, most architectures (x86, x64, ARM, ...) will atomically
load and store 32 bits values (if correctly aligned).

15

Interlude Il: atomicity of load and store...

A thread notifies another that it should stop (initially b = 1):

while(b) { £O; } Il gO; b =0;

The compiler is allowed to optimize the first part as:

if(b) {
while(1) { £O; }
}

provided f does not modify b.

Indeed, in C++ any concurrent access to shared variable, with at least
one write, is undefined behavior.

Conclusion: We still need atomic load and store, for the correctness of
our model.

16

