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What in this presentation?

We are going to overview two parallel programming models:

1. Pessimistic Parallel Programming (state of the art).

2. Optimistic Parallel Programming (contribution).

Characteristics of our model

• Lock-free and correct.

• Based on fixpoint over lattices.

• Useful for programming parallel constraint solvers.
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Pessimistic Parallel Programming
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Running example: parallel maximum

Each thread computes its local max (map), then we compute the max of

all local max (reduce).

• Map:

3 2 10 23 2 7 91 1 0 0 42 11 8 1 32

Thread 1, m1 = 23 Thread 2, m2 = 91 Thread 3, m3 = 42

• Reduce: max([23, 91, 42]) = 91.

Sequential bottleneck: With 100 elements (10 threads), the reduce

step takes as much time as the map step.

How to program the reduce step in parallel?
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Parallel max

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

Then you run:

*m = MIN_INT;

max(0, data, m) || . . . || max(n-1, data, m)

where p || q is the parallel composition.

Good? No! Data-race.
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Parallel max fixed!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

lock(m) {

*m = data[tid];

}

}

}

Good? No!

Can produce wrong results.

4



Parallel max fixed!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

lock(m) {

*m = data[tid];

}

}

}

Good? No!

Can produce wrong results.

4



Parallel max fixed again!?

/∗∗ Suppose as many threads as elements in ‘data‘. ∗/
void max(int tid, const int* data, int* m) {

lock(m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

}

Good? Yes!

But our “parallel” algorithm is now

sequential.
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OKayish in a map-reduce context

Not that bad if each thread performs work on data[tid] and “desynchronize”.

void map_then_max(int tid, const int* data, int* m) {

int r = f(data[tid]);

lock(m) {

if(r > *m) {

*m = r;

}

}

}

Still, locks are expensive.
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Atomics to the rescue (?)

C++11 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {

m.max(data[tid]);

}

std::atomics does not provide a max

function.
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Atomics to the rescue...

C++11 atomics can unlock lock-free programming for better efficiency :)

void max(int tid, const int* data, std::atomic<int>& m) {

int prev_max = m;

while(prev_max < data[tid] &&

!m.compare_exchange_weak(prev_max, data[tid]))

{}

}

Finally OK using a compare-and-swap operation.
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The problem with threads

Multithreading programming is pessimistic.

For a data race that happens once in million instructions, this model:

• Makes parallel programming painful and difficult.

• Slows down computation.

• Prevents us from thinking with a true parallel mindset.
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Optimistic Parallel Programming
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Let’s be optimistic

Instead of being afraid of data races, let’s welcome them as part of the

programming model itself.

void max(int tid, const int* data, int* m) {

if(data[tid] > *m) {

*m = data[tid];

}

}

What happens in case of a data race?

• Suppose two threads with data = [1, 2].

• If a data race occurs, *m == 1.

• But if we run max again, then we must obtain *m == 2.
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Let’s do extra work only when data races occur
(optimistic)

In case of n data races, we run the algorithm n + 1 times:

int old = *m + 1;

while(old != *m) {

max(0, data, m) || . . . || max(n-1, data, m);

old = *m;

}

This is called the fixed point loop.
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Fixing optimistic max in parallel

However, for other reason than data races, we still need atomic load and

store:

void max(int tid, const int* data, std::atomic<int>& m) {

if(data[tid] > m.load()) {

m.store(data[tid]);

}

}

Note that, we only need atomic load and store, every other operation can

be performed non-atomically.
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C++ Abstraction: Lattice Land Project

lattice-land is a collection of libraries abstracting our parallel model.

It provides various data types and fixpoint loop:

• ZInc, ZDec: increasing/decreasing integers.

• BInc, BDec: Boolean lattices.

• VStore: Array (of lattice elements).

• IPC: Arithmetic constraints.

• GaussSeidelIteration: Sequential CPU fixed point loop.

• AsynchronousIteration: GPU-accelerated fixed point loop.

• . . .

void max(int tid, const int* data, ZInc& m) {

m.tell(data[tid]);

}

AsynchronousIteration::fixpoint(max);

https://github.com/lattice-land
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Conclusion

Data races occur rarely, so we should avoid working so
much to avoid them.

Further properties of the model

A Variant of Concurrent Constraint Programming on GPU (AAAI 2022)1.

• Correct: Proofs that P;Q ≡ P||Q, parallel and sequential versions

produce the same results.

• Restartable: Stop the program at any time, and restart on partial data.

• Modular: Add more threads without fear of breaking existing code.

• Weak memory consistency: Very few requirements on the underlying

memory model ⇒ wide compatibility across hardware, unlock

optimization.

1http://hyc.io/papers/aaai2022.pdf
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Interlude: atomicity of load and store...

At start, suppose x,y = 0.

T1 T2

x ← 512 x ← 1

What are the possible outcomes?

x = 512, x = 1 and... x = 513.

Really? 513?

Assignment is not necessarily atomic. View x as an array of two bytes x[0]x[1]:

T2: x[0] ← 0

T1: x[0] ← 1 (x = 512)

T2: x[1] ← 0

T1: x[1] ← 1 (x = 513)

But in practice, most architectures (x86, x64, ARM, ...) will atomically

load and store 32 bits values (if correctly aligned).
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Interlude II: atomicity of load and store...

A thread notifies another that it should stop (initially b = 1):

while(b) { f(); } || g(); b = 0;

The compiler is allowed to optimize the first part as:

if(b) {

while(1) { f(); }

}

provided f does not modify b.

Indeed, in C++ any concurrent access to shared variable, with at least

one write, is undefined behavior.

Conclusion: We still need atomic load and store, for the correctness of

our model.
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