Lattice Land Core Library
ast.hpp
Go to the documentation of this file.
1 // Copyright 2021 Pierre Talbot
2 
3 #ifndef LALA_CORE_AST_HPP
4 #define LALA_CORE_AST_HPP
5 
6 #include "battery/utility.hpp"
7 #include "battery/vector.hpp"
8 #include "battery/string.hpp"
9 #include "battery/tuple.hpp"
10 #include "battery/variant.hpp"
11 #include "battery/shared_ptr.hpp"
12 #include "battery/unique_ptr.hpp"
13 #include "sort.hpp"
14 #include <optional>
15 
16 #ifdef _WINDOWS
17 # undef DIFFERENCE // Avoid clash with #define in WinUser.h
18 # undef IN // Avoid clash with #define in ntdef.h
19 #endif
20 
21 namespace lala {
22 
23 /** A "logical variable" is just the name of the variable. */
24 template<class Allocator>
25 using LVar = battery::string<Allocator>;
26 
27 /** The kind of interpretation operations. */
28 enum class IKind {
29  ASK,
30  TELL
31 };
32 
33 /** We call an "abstract variable" the representation of a logical variable in an abstract domain.
34 It is a pair of integers `(aty, vid)` where `aty` is the UID of the abstract element and `vid` is an internal identifier of the variable inside the abstract element.
35 The mapping between logical variables and abstract variables is maintained in an environment (see `env.hpp`).
36 An abstract variable always has a single name (or no name if it is not explicitly represented in the initial formula).
37 But a logical variable can be represented by several abstract variables when the variable occurs in different abstract elements. */
38 class AVar {
39  int value;
40 public:
41  CUDA constexpr AVar(): value(-1) {}
42  constexpr AVar(const AVar&) = default;
43  constexpr AVar(AVar&&) = default;
44  constexpr AVar& operator=(const AVar&) = default;
45  constexpr AVar& operator=(AVar&&) = default;
46  CUDA constexpr bool operator==(const AVar& other) const {
47  return value == other.value;
48  }
49  CUDA constexpr bool operator!=(const AVar& other) const {
50  return value != other.value;
51  }
52 
53  CUDA constexpr AVar(AType atype, int var_id): value((var_id << 8) | atype) {
54  assert(atype >= 0);
55  assert(var_id >= 0);
56  assert(atype < (1 << 8));
57  assert(var_id < (1 << 23));
58  }
59  CUDA constexpr AVar(AType atype, size_t var_id): AVar(atype, static_cast<int>(var_id)) {}
60 
61  CUDA constexpr bool is_untyped() const {
62  return value == -1;
63  }
64 
65  CUDA constexpr int aty() const {
66  return is_untyped() ? -1 : (value & ((1 << 8) - 1));
67  }
68 
69  CUDA constexpr int vid() const {
70  return is_untyped() ? -1 : value >> 8;
71  }
72 
73  CUDA constexpr void type_as(AType aty) {
74  value = (vid() << 8) | aty;
75  }
76 };
77 
78 /** A first-order signature is a triple \f$ (X, F, P) \f$ where \f$ X \f$ is the set of variables, \f$ F \f$ the set of function symbols and \f$ P \f$ the set of predicates.
79  We represent \f$ X \f$ by strings (see `LVar`), while \f$ F \f$ and \f$ P \f$ are described in the following enumeration `Sig`.
80  For programming conveniency, we suppose that logical connectors are included in the set of predicates and thus are in the signature as well.
81  Finally, function symbols and predicates are at the "same level".
82  Hence a predicate can occur as the argument of a function, which is convenient when modelling, consider for example a cardinality constraint: \f$ ((x > 4) + (y < 4) + (z = 3)) \neq 2 \f$.
83 
84  Symbols are sometimes overloaded across different universe of discourse.
85  For instance, `ADD` can be used over integers, reals and even set of integers (pairwise addition).
86 
87  Division and modulus are defined as usual over continuous domains such as rational and real numbers.
88  However, it gets more tricky when defined over discrete domains such as integers and floating-point numbers, since there is not a single definition of division and modulus.
89  The various kinds of discrete divisions are explained in (Leijend D. (2003). Division and Modulus for Computer Scientists), and we add four of those definitions to the logical signature.
90  There are several use-cases of modulus and division:
91  * If you write a constraint model, you probably want to use euclidean division and modulus (EDIV, EMOD) as this is the most "mathematical" definition.
92  * If you intend to model the semantics of a programming language, you should use the same kind of division as the one present in your programming language (most likely truncated division).
93  */
94 enum Sig {
95  ///@{
96  NEG, ABS, ///< Unary arithmetic function symbols.
97  ADD, SUB, MUL, POW, MIN, MAX, ///< Binary arithmetic function symbols.
98  SQRT, EXP, LN, ///< Square root, natural exponential and natural logarithm function symbols.
99  NROOT, LOG, ///< nth root and logarithm to base (both binary function symbols).
100  SIN, COS, TAN, ASIN, ACOS, ATAN, SINH, COSH, TANH, ASINH, ACOSH, ATANH, ///< Trigonometric unary function symbols.
101  DIV, MOD, ///< Division and modulus over continuous domains (e.g., floating-point numbers and rational).
102  TDIV, TMOD, ///< Truncated division, present in most programming languages, is defined as \f$ a\,\mathbf{tdiv}\,b = \mathit{trunc}(a/b) \f$, i.e., it rounds towards zero. Modulus is defined as \f$ a\,\mathbf{tmod}\,b = a - b * (a\,\mathbf{tdiv}\,b) \f$.
103  FDIV, FMOD, ///< Floor division (Knuth D. (1972). The Art of Computer Programming, Vol 1, Fundamental Algorithms), is defined as \f$ a\,\mathbf{fdiv}\,b = \lfloor a/b \rfloor \f$, i.e., it rounds towards negative infinity. Modulus is defined as \f$ a\,\mathbf{fmod}\,b = a - b * (a\,\mathbf{fdiv}\,b) \f$.
104  CDIV, CMOD, ///< Ceil division is defined as \f$ a\,\mathbf{cdiv}\,b = \lceil a/b \rceil \f$. Modulus is defined as \f$ a\,\mathbf{cmod}\,b = a - b * (a\,\mathbf{cdiv}\,b) \f$.
105  EDIV, EMOD, ///< Euclidean division (Boute T. R. (1992). The Euclidean definition of the functions div and mod). The properties satisfy by this division are: (1) \f$ a\,\mathbf{ediv}\,b \in \mathbb{Z} \f$, (2) \f$ a = b * (a\,\mathbf{ediv}\,b) + (a\,\mathbf{emod}\,b) \f$ and (3) \f$ 0 \leq a\,\mathbf{emod}\,b < |b|\f$. Further, note that Euclidean division satisfies \f$ a\,\mathbf{ediv}\,(-b) = -(a\,\mathbf{ediv}\,b) \f$ and \f$ a\,\mathbf{emod}\,(-b) = a\,\mathbf{emod}\,b \f$.
107  SUBSET, SUBSETEQ, SUPSET, SUPSETEQ, ///< Set inclusion predicates.
108  IN, ///< Set membership predicate.
109  CARD, ///< Cardinality function from set to integer.
110  HULL, ///< Unary function performing the convex hull of a set, e.g., \f$ \mathit{hull}(s) = \{x \;|\; \mathit{min}(s) \leq x \leq \mathit{max}(s) \} \f$.
111  CONVEX, ///< Unary predicate, requiring \f$ s = \mathit{hull}(s) \f$.
112  EQ, NEQ, ///< Equality relations.
113  LEQ, GEQ, LT, GT, ///< Arithmetic comparison predicates. When applied to set, it corresponds to the lexicographic ordering of the sorted set according the underlying natural ordering of the elements in the set.
114  AND, OR, IMPLY, EQUIV, NOT, XOR, ///< Logical connector.
115  ITE, ///< If-then-else
116  MAXIMIZE, ///< Unary "meta-predicate" indicating that its argument must be maximized, according to the increasing ordering of the underlying universe of discourse. This is not a predicate because it is defined on the solutions space of the whole formulas.
117  MINIMIZE ///< Same as MAXIMIZE, but for minimization.
118  ///@}
119 };
120 
121 CUDA NI inline const char* string_of_sig(Sig sig) {
122  switch(sig) {
123  case NEG: return "-";
124  case ABS: return "abs";
125  case ADD: return "+";
126  case SUB: return "-";
127  case MUL: return "*";
128  case DIV: return "/";
129  case TDIV: return "tdiv";
130  case FDIV: return "fdiv";
131  case CDIV: return "cdiv";
132  case EDIV: return "ediv";
133  case MOD: return "%%";
134  case TMOD: return "tmod";
135  case FMOD: return "fmod";
136  case CMOD: return "cmod";
137  case EMOD: return "emod";
138  case POW: return "^";
139  case SQRT: return "sqrt";
140  case EXP: return "exp";
141  case LN: return "ln";
142  case NROOT: return "nroot";
143  case LOG: return "log";
144  case SIN: return "sin";
145  case COS: return "cos";
146  case TAN: return "tan";
147  case ASIN: return "asin";
148  case ACOS: return "acos";
149  case ATAN: return "atan";
150  case SINH: return "sinh";
151  case COSH: return "cosh";
152  case TANH: return "tanh";
153  case ASINH: return "asinh";
154  case ACOSH: return "acosh";
155  case ATANH: return "atanh";
156  case MIN: return "min";
157  case MAX: return "max";
158  case UNION: return "\u222A";
159  case INTERSECTION: return "\u2229";
160  case DIFFERENCE: return "\\";
161  case SYMMETRIC_DIFFERENCE: return "\u2296";
162  case COMPLEMENT: return "complement";
163  case IN: return "\u2208";
164  case SUBSET: return "\u2282";
165  case SUBSETEQ: return "\u2286";
166  case SUPSET: return "\u2283";
167  case SUPSETEQ: return "\u2287";
168  case CARD: return "card";
169  case HULL: return "hull";
170  case CONVEX: return "convex";
171  case EQ: return "=";
172  case NEQ: return "\u2260";
173  case LEQ: return "\u2264";
174  case GEQ: return "\u2265";
175  case LT: return "<";
176  case GT: return ">";
177  case AND: return "\u2227";
178  case OR: return "\u2228";
179  case IMPLY: return "\u21D2";
180  case EQUIV: return "\u21D4";
181  case NOT: return "\u00AC";
182  case XOR: return "\u2295";
183  case ITE: return "ite";
184  case MAXIMIZE: return "maximize";
185  case MINIMIZE: return "minimize";
186  default:
187  assert(false);
188  return "<bug! unknown sig>";
189  }
190  }
191 
192  CUDA NI inline const char* string_of_sig_txt(Sig sig) {
193  switch(sig) {
194  case NEG: return "neg";
195  case ADD: return "add";
196  case SUB: return "sub";
197  case MUL: return "mul";
198  case DIV: return "div";
199  case MOD: return "mod";
200  case POW: return "pow";
201  case UNION: return "union";
202  case INTERSECTION: return "intersection";
203  case DIFFERENCE: return "difference";
204  case SYMMETRIC_DIFFERENCE: return "symmetric_difference";
205  case IN: return "in";
206  case SUBSET: return "subset";
207  case SUBSETEQ: return "subseteq";
208  case SUPSET: return "supset";
209  case SUPSETEQ: return "supseteq";
210  case EQ: return "eq";
211  case NEQ: return "neq";
212  case LEQ: return "leq";
213  case GEQ: return "geq";
214  case LT: return "lt";
215  case GT: return "gt";
216  case AND: return "and";
217  case OR: return "or";
218  case IMPLY: return "imply";
219  case EQUIV: return "equiv";
220  case NOT: return "not";
221  case XOR: return "xor";
222  default: return string_of_sig(sig);
223  }
224  }
225 
226  CUDA NI inline constexpr bool is_prefix(Sig sig) {
227  return sig == ABS || sig == SQRT || sig == EXP || sig == LN || sig == NROOT || sig == LOG || sig == SIN || sig == COS || sig == TAN || sig == ASIN || sig == ACOS || sig == ATAN || sig == SINH || sig == COSH || sig == TANH || sig == ASINH || sig == ACOSH || sig == ATANH || sig == MIN || sig == MAX || sig == COMPLEMENT || sig == CARD || sig == HULL || sig == CONVEX || sig == ITE || sig == MAXIMIZE || sig == MINIMIZE;
228  }
229 
230  CUDA NI inline constexpr bool is_division(Sig sig) {
231  return sig == DIV || sig == TDIV || sig == EDIV || sig == FDIV || sig == CDIV;
232  }
233 
234  CUDA NI inline constexpr bool is_modulo(Sig sig) {
235  return sig == MOD || sig == TMOD || sig == EMOD || sig == FMOD || sig == CMOD;
236  }
237 
238  CUDA NI inline constexpr bool is_associative(Sig sig) {
239  return sig == ADD || sig == MUL || sig == AND || sig == OR || sig == EQUIV || sig == XOR
240  || sig == UNION || sig == INTERSECTION || sig == MAX || sig == MIN;
241  }
242 
243  CUDA NI inline constexpr bool is_commutative(Sig sig) {
244  // All operators defined in `is_associative` are also commutative for now.
245  return is_associative(sig) || sig == EQ;
246  }
247 
248  CUDA NI inline constexpr bool is_arithmetic_comparison(Sig sig) {
249  return sig == LEQ || sig == GEQ || sig == EQ || sig == NEQ || sig == GT || sig == LT;
250  }
251 
252  CUDA NI inline constexpr bool is_logical(Sig sig) {
253  return sig == AND || sig == OR || sig == IMPLY || sig == EQUIV || sig == NOT || sig == XOR;
254  }
255 
256  CUDA NI inline constexpr bool is_predicate(Sig sig) {
257  return sig == IN || sig == SUBSET || sig == SUBSETEQ || sig == SUPSET || sig == SUPSETEQ ||
258  sig == EQ || sig == NEQ || sig == LEQ || sig == GEQ || sig == LT || sig == GT;
259  }
260 }
261 
262 namespace battery {
263  template<>
264  CUDA NI inline void print(const lala::Sig& sig) {
265  printf("%s", lala::string_of_sig(sig));
266  }
267 }
268 
269 namespace lala {
270 
271 /** `TFormula` represents the AST of a typed first-order logical formula.
272 In our context, the type of a formula is an integer representing the UID of an abstract domain in which the formula should to be interpreted.
273 It defaults to the value `UNTYPED` if the formula is not (yet) typed.
274 By default, the types of integer and real number are supported.
275 The supported symbols can be extended with the template parameter `ExtendedSig`.
276 This extended signature can also be used for representing exactly constant such as real numbers using a string.
277 The AST of a formula is represented by a variant, where each alternative is described below.
278 We represent everything at the same level (term, formula, predicate, variable, constant).
279 This is generally convenient when modelling to avoid creating intermediate boolean variables when reifying.
280 We can have `x + (x > y \/ y > x + 4) >= 1`.
281 
282 Differently from first-order logic, the existential quantifier does not have a subformula, i.e., we write \f$ \exists{x:Int} \land \exists{y:Int} \land x < y\f$.
283 This semantics comes from "dynamic predicate logic" where a formula is interpreted in a context (here the abstract element).
284 (The exact connection of our framework to dynamic predicate logic is not yet perfectly clear.) */
285 template<class Allocator, class ExtendedSig = battery::string<Allocator>>
286 class TFormula {
287 public:
288  using allocator_type = Allocator;
290  using Sequence = battery::vector<this_type, Allocator>;
291  using Existential = battery::tuple<LVar<Allocator>, Sort<Allocator>>;
293  using Formula = battery::variant<
294  logic_bool, ///< Representation of Booleans.
295  logic_int, ///< Representation of integers.
296  logic_real, ///< Approximation of real numbers.
297  LogicSet, ///< Set of Booleans, integers, reals or sets.
298  AVar, ///< Abstract variable
299  LVar<Allocator>, ///< Logical variable
300  Existential, ///< Existential quantifier
301  battery::tuple<Sig, Sequence>, ///< ADD, SUB, ..., EQ, ..., AND, .., NOT
302  battery::tuple<ExtendedSig, Sequence> ///< see above
303  >;
304 
305  /** Index of Booleans in the variant type `Formula` (called kind below). */
306  static constexpr size_t B = 0;
307 
308  /** Index of integers in the variant type `Formula` (called kind below). */
309  static constexpr size_t Z = B + 1;
310 
311  /** Index of real numbers in the variant type `Formula` (called kind below). */
312  static constexpr size_t R = Z + 1;
313 
314  /** Index of sets in the variant type `Formula` (called kind below). */
315  static constexpr size_t S = R + 1;
316 
317  /** Index of abstract variables in the variant type `Formula` (called kind below). */
318  static constexpr size_t V = S + 1;
319 
320  /** Index of logical variables in the variant type `Formula` (called kind below). */
321  static constexpr size_t LV = V + 1;
322 
323  /** Index of existential quantifier in the variant type `Formula` (called kind below). */
324  static constexpr size_t E = LV + 1;
325 
326  /** Index of n-ary operators in the variant type `Formula` (called kind below). */
327  static constexpr size_t Seq = E + 1;
328 
329  /** Index of n-ary operators where the operator is an extended signature in the variant type `Formula` (called kind below). */
330  static constexpr size_t ESeq = Seq + 1;
331 
332 private:
333  AType type_;
334  Formula formula;
335 
336 public:
337  /** By default, we initialize the formula to `true`. */
338  CUDA TFormula(): type_(UNTYPED), formula(Formula::template create<B>(true)) {}
339  CUDA TFormula(Formula&& formula): type_(UNTYPED), formula(std::move(formula)) {}
340  CUDA TFormula(AType uid, Formula&& formula): type_(uid), formula(std::move(formula)) {}
341 
342  CUDA TFormula(const this_type& other): type_(other.type_), formula(other.formula) {}
343  CUDA TFormula(this_type&& other): type_(other.type_), formula(std::move(other.formula)) {}
344 
345  template <class Alloc2, class ExtendedSig2>
346  friend class TFormula;
347 
348  template <class Alloc2, class ExtendedSig2>
349  CUDA NI TFormula(const TFormula<Alloc2, ExtendedSig2>& other, const Allocator& allocator = Allocator())
350  : type_(other.type_), formula(Formula::template create<B>(true))
351  {
352  switch(other.formula.index()) {
353  case B: formula = Formula::template create<B>(other.b()); break;
354  case Z: formula = Formula::template create<Z>(other.z()); break;
355  case R: formula = Formula::template create<R>(other.r()); break;
356  case S: formula = Formula::template create<S>(LogicSet(other.s(), allocator));
357  break;
358  case V: formula = Formula::template create<V>(other.v()); break;
359  case LV: formula = Formula::template create<LV>(LVar<Allocator>(other.lv(), allocator)); break;
360  case E: formula = Formula::template create<E>(
361  battery::make_tuple(
362  LVar<Allocator>(battery::get<0>(other.exists()), allocator),
363  battery::get<1>(other.exists())));
364  break;
365  case Seq:
366  formula = Formula::template create<Seq>(
367  battery::make_tuple(
368  other.sig(),
369  Sequence(other.seq(), allocator)));
370  break;
371  case ESeq:
372  formula = Formula::template create<ESeq>(
373  battery::make_tuple(
374  ExtendedSig(other.esig(), allocator),
375  Sequence(other.eseq(), allocator)));
376  break;
377  default: printf("print: formula not handled.\n"); assert(false); break;
378  }
379  }
380 
381  CUDA void swap(this_type& other) {
382  ::battery::swap(type_, other.type_);
383  ::battery::swap(formula, other.formula);
384  }
385 
386  CUDA this_type& operator=(const this_type& rhs) {
387  this_type(rhs).swap(*this);
388  return *this;
389  }
390 
392  this_type(std::move(rhs)).swap(*this);
393  return *this;
394  }
395 
396  CUDA Formula& data() { return formula; }
397  CUDA const Formula& data() const { return formula; }
398  CUDA AType type() const { return type_; }
399  CUDA void type_as(AType ty) {
400  type_ = ty;
401  if(is(V)) {
402  v().type_as(ty);
403  }
404  }
405 
406  CUDA constexpr bool is_untyped() const {
407  return type() == UNTYPED;
408  }
409 
410  CUDA NI std::optional<Sort<allocator_type>> sort() const {
411  using sort_t = Sort<allocator_type>;
412  switch(formula.index()) {
413  case B: return sort_t(sort_t::Bool);
414  case Z: return sort_t(sort_t::Int);
415  case R: return sort_t(sort_t::Real);
416  case S: {
417  if(s().empty()) {
418  return {}; // Impossible to get the sort of the empty set.
419  }
420  for(int i = 0; i < s().size(); ++i) {
421  auto subsort = battery::get<0>(s()[i]).sort();
422  if(!subsort.has_value()) {
423  subsort = battery::get<1>(s()[i]).sort();
424  }
425  if(subsort.has_value()) {
426  return sort_t(sort_t::Set, std::move(*subsort) , s().get_allocator());
427  }
428  }
429  break;
430  }
431  case E: return battery::get<1>(exists());
432  }
433  return {};
434  }
435 
436  CUDA static this_type make_true() { return TFormula(); }
437  CUDA static this_type make_false() { return TFormula(Formula::template create<B>(false)); }
438 
439  CUDA static this_type make_bool(logic_bool b, AType atype = UNTYPED) {
440  return this_type(atype, Formula::template create<B>(b));
441  }
442 
443  CUDA static this_type make_z(logic_int i, AType atype = UNTYPED) {
444  return this_type(atype, Formula::template create<Z>(i));
445  }
446 
447  /** Create a term representing a real number which is approximated by interval [lb..ub].
448  By default the real number is supposedly over-approximated. */
449  CUDA static this_type make_real(double lb, double ub, AType atype = UNTYPED) {
450  return this_type(atype, Formula::template create<R>(battery::make_tuple(lb, ub)));
451  }
452 
453  CUDA static this_type make_real(logic_real r, AType atype = UNTYPED) {
454  return this_type(atype, Formula::template create<R>(r));
455  }
456 
457  CUDA static this_type make_set(LogicSet set, AType atype = UNTYPED) {
458  return this_type(atype, Formula::template create<S>(std::move(set)));
459  }
460 
461  /** The type of the formula is embedded in `v`. */
462  CUDA static this_type make_avar(AVar v) {
463  return this_type(v.aty(), Formula::template create<V>(v));
464  }
465 
466  CUDA static this_type make_avar(AType ty, int vid) {
467  return make_avar(AVar(ty, vid));
468  }
469 
470  CUDA static this_type make_lvar(AType ty, LVar<Allocator> lvar) {
471  return this_type(ty, Formula::template create<LV>(std::move(lvar)));
472  }
473 
475  return this_type(ty, Formula::template create<E>(battery::make_tuple(std::move(lvar), std::move(ctype))));
476  }
477 
478  /** If `flatten` is `true` it will try to merge the children together to avoid nested formula. */
479  CUDA NI static this_type make_nary(Sig sig, Sequence children, AType atype = UNTYPED, bool flatten=true)
480  {
481  if(is_associative(sig) && flatten) {
482  Sequence seq{children.get_allocator()};
483  for(size_t i = 0; i < children.size(); ++i) {
484  if(children[i].is(Seq) && children[i].sig() == sig && children[i].type() == atype) {
485  for(size_t j = 0; j < children[i].seq().size(); ++j) {
486  seq.push_back(std::move(children[i].seq(j)));
487  }
488  }
489  else {
490  seq.push_back(std::move(children[i]));
491  }
492  }
493  return this_type(atype, Formula::template create<Seq>(battery::make_tuple(sig, std::move(seq))));
494  }
495  else {
496  return this_type(atype, Formula::template create<Seq>(battery::make_tuple(sig, std::move(children))));
497  }
498  /** The following code leads to bugs (accap_a4 segfaults, wordpress7_500 gives wrong answers).
499  * I don't know why, but it seems that the simplification is not always correct, perhaps in reified context?
500  * Or perhaps it is a question of atype? */
501  // if(seq.size() == 0) {
502  // if(sig == AND) return make_true();
503  // if(sig == OR) return make_false();
504  // }
505  // if(seq.size() == 1 && (sig == AND || sig == OR)) {
506  // return std::move(seq[0]);
507  // }
508  }
509 
510  CUDA static this_type make_unary(Sig sig, TFormula child, AType atype = UNTYPED, const Allocator& allocator = Allocator()) {
511  return make_nary(sig, Sequence({std::move(child)}, allocator), atype);
512  }
513 
514  CUDA static this_type make_binary(TFormula lhs, Sig sig, TFormula rhs, AType atype = UNTYPED, const Allocator& allocator = Allocator(), bool flatten=true) {
515  return make_nary(sig, Sequence({std::move(lhs), std::move(rhs)}, allocator), atype, flatten);
516  }
517 
518  CUDA static this_type make_nary(ExtendedSig esig, Sequence children, AType atype = UNTYPED) {
519  return this_type(atype, Formula::template create<ESeq>(battery::make_tuple(std::move(esig), std::move(children))));
520  }
521 
522  CUDA size_t index() const {
523  return formula.index();
524  }
525 
526  CUDA bool is(size_t kind) const {
527  return formula.index() == kind;
528  }
529 
530  CUDA bool is_true() const {
531  return (is(B) && b()) || (is(Z) && z() != 0);
532  }
533 
534  CUDA bool is_false() const {
535  return (is(B) && !b()) || (is(Z) && z() == 0);
536  }
537 
538  CUDA logic_int to_z() const {
539  assert(is(B) || is(Z));
540  return (is(B) ? (b() ? 1 : 0) : z());
541  }
542 
543  CUDA bool is_constant() const {
544  return is(B) || is(Z) || is(R) || is(S);
545  }
546 
547  CUDA bool is_variable() const {
548  return is(LV) || is(V);
549  }
550 
551  CUDA bool is_unary() const {
552  return is(Seq) && seq().size() == 1;
553  }
554 
555  CUDA bool is_binary() const {
556  return is(Seq) && seq().size() == 2;
557  }
558 
559  CUDA logic_bool b() const {
560  return battery::get<B>(formula);
561  }
562 
563  CUDA logic_int z() const {
564  return battery::get<Z>(formula);
565  }
566 
567  CUDA const logic_real& r() const {
568  return battery::get<R>(formula);
569  }
570 
571  CUDA const LogicSet& s() const {
572  return battery::get<S>(formula);
573  }
574 
575  CUDA AVar v() const {
576  return battery::get<V>(formula);
577  }
578 
579  CUDA const LVar<Allocator>& lv() const {
580  return battery::get<LV>(formula);
581  }
582 
583  CUDA const Existential& exists() const {
584  return battery::get<E>(formula);
585  }
586 
587  CUDA Sig sig() const {
588  return battery::get<0>(battery::get<Seq>(formula));
589  }
590 
591  CUDA NI bool is_logical() const {
592  if(is(Seq)) {
594  }
595  return false;
596  }
597 
598  CUDA NI bool is_predicate() const {
599  if(is(Seq)) {
601  }
602  return false;
603  }
604 
605  CUDA NI bool is_comparison() const {
606  if(is(Seq)) {
607  Sig s = sig();
608  return is_arithmetic_comparison(s);
609  }
610  return false;
611  }
612 
613  CUDA const ExtendedSig& esig() const {
614  return battery::get<0>(battery::get<ESeq>(formula));
615  }
616 
617  CUDA const Sequence& seq() const {
618  return battery::get<1>(battery::get<Seq>(formula));
619  }
620 
621  CUDA const this_type& seq(size_t i) const {
622  return seq()[i];
623  }
624 
625  CUDA const Sequence& eseq() const {
626  return battery::get<1>(battery::get<ESeq>(formula));
627  }
628 
629  CUDA const this_type& eseq(size_t i) const {
630  return eseq()[i];
631  }
632 
633  CUDA logic_bool& b() {
634  return battery::get<B>(formula);
635  }
636 
637  CUDA logic_int& z() {
638  return battery::get<Z>(formula);
639  }
640 
641  CUDA logic_real& r() {
642  return battery::get<R>(formula);
643  }
644 
645  CUDA LogicSet& s() {
646  return battery::get<S>(formula);
647  }
648 
649  CUDA AVar& v() {
650  return battery::get<V>(formula);
651  }
652 
653  CUDA Sig& sig() {
654  return battery::get<0>(battery::get<Seq>(formula));
655  }
656 
657  CUDA ExtendedSig& esig() {
658  return battery::get<0>(battery::get<ESeq>(formula));
659  }
660 
661  CUDA Sequence& seq() {
662  return battery::get<1>(battery::get<Seq>(formula));
663  }
664 
665  CUDA this_type& seq(size_t i) {
666  return seq()[i];
667  }
668 
669  CUDA Sequence& eseq() {
670  return battery::get<1>(battery::get<ESeq>(formula));
671  }
672 
673  CUDA this_type& eseq(size_t i) {
674  return eseq()[i];
675  }
676 
677  CUDA NI this_type map_sig(Sig sig) const {
678  assert(is(Seq));
679  this_type f = *this;
680  f.sig() = sig;
681  return std::move(f);
682  }
683 
684  CUDA NI this_type map_atype(AType aty) const {
685  this_type f = *this;
686  f.type_as(aty);
687  return std::move(f);
688  }
689 
690 private:
691  template <class Fun>
692  CUDA NI void inplace_map_(Fun fun, const this_type& parent) {
693  switch(formula.index()) {
694  case Seq: {
695  for(int i = 0; i < seq().size(); ++i) {
696  seq(i).inplace_map_(fun, *this);
697  }
698  break;
699  }
700  case ESeq: {
701  for(int i = 0; i < eseq().size(); ++i) {
702  eseq(i).inplace_map_(fun, *this);
703  }
704  break;
705  }
706  default: {
707  fun(*this, parent);
708  break;
709  }
710  }
711  }
712 
713 public:
714 
715  /** In-place map of each leaf of the formula to a new leaf according to `fun`. */
716  template <class Fun>
717  CUDA NI void inplace_map(Fun fun) {
718  return inplace_map_(fun, *this);
719  }
720 
721  /** Map of each leaf of the formula to a new leaf according to `fun`. */
722  template <class Fun>
723  CUDA NI this_type map(Fun fun) {
724  this_type copy(*this);
725  copy.inplace_map([&](this_type& f, const this_type& parent){ f = fun(f, parent); });
726  return std::move(copy);
727  }
728 
729 private:
730  template<size_t n>
731  CUDA NI void print_sequence(bool print_atype, bool top_level = false) const {
732  const auto& op = battery::get<0>(battery::get<n>(formula));
733  const auto& children = battery::get<1>(battery::get<n>(formula));
734  if(children.size() == 0) {
735  ::battery::print(op);
736  return;
737  }
738  if constexpr(n == Seq) {
739  if(children.size() == 1) {
740  if(op == ABS) printf("|");
741  else if(op == CARD) printf("#(");
742  else printf("%s(", string_of_sig(op));
743  children[0].print_impl(print_atype);
744  if(op == ABS) printf("|");
745  else if(op == CARD) printf(")");
746  else printf(")");
747  return;
748  }
749  }
750  bool isprefix = true;
751  if constexpr(n == Seq) {
752  isprefix = is_prefix(op);
753  }
754  if(isprefix) {
755  ::battery::print(op);
756  }
757  printf("(");
758  for(int i = 0; i < children.size(); ++i) {
759  children[i].print_impl(print_atype);
760  if(i < children.size() - 1) {
761  if(!isprefix) {
762  printf(" ");
763  ::battery::print(op);
764  printf(" ");
765  }
766  else {
767  printf(", ");
768  }
769  }
770  if constexpr(n == Seq) {
771  if(op == AND && top_level) {
772  printf("\n");
773  }
774  }
775  }
776  printf(")");
777  }
778 
779  CUDA NI void print_impl(bool print_atype = true, bool top_level = false) const {
780  switch(formula.index()) {
781  case B:
782  printf("%s", b() ? "true" : "false");
783  break;
784  case Z:
785  printf("%lld", z());
786  break;
787  case R: {
788  const auto& r_lb = battery::get<0>(r());
789  const auto& r_ub = battery::get<1>(r());
790  if(r_lb == r_ub) {
791  printf("%.50lf", r_lb);
792  }
793  else {
794  printf("[%.50lf..%.50lf]", r_lb, r_ub);
795  }
796  break;
797  }
798  case S:
799  printf("{");
800  for(int i = 0; i < s().size(); ++i) {
801  const auto& lb = battery::get<0>(s()[i]);
802  const auto& ub = battery::get<1>(s()[i]);
803  if(lb == ub) {
804  lb.print(print_atype);
805  }
806  else {
807  printf("[");
808  lb.print(print_atype);
809  printf("..");
810  ub.print(print_atype);
811  printf("]");
812  }
813  if(i < s().size() - 1) {
814  printf(", ");
815  }
816  }
817  printf("}");
818  break;
819  case V:
820  printf("var(%d, %d)", v().vid(), v().aty());
821  break;
822  case LV:
823  lv().print();
824  break;
825  case E: {
826  if(print_atype) { printf("("); }
827  const auto& e = exists();
828  printf("var ");
829  battery::get<0>(e).print();
830  printf(":");
831  battery::get<1>(e).print();
832  if(print_atype) { printf(")"); }
833  break;
834  }
835  case Seq: print_sequence<Seq>(print_atype, top_level); break;
836  case ESeq: print_sequence<ESeq>(print_atype, top_level); break;
837  default: printf("print: formula not handled.\n"); assert(false); break;
838  }
839  if(print_atype) {
840  printf(":%d", type_);
841  }
842  }
843 
844 public:
845  CUDA void print(bool print_atype = false) const {
846  print_impl(print_atype, true);
847  }
848 };
849 
850 template<typename Allocator, typename ExtendedSig>
852  return lhs.type() == rhs.type() && lhs.data() == rhs.data();
853 }
854 
855 template<typename Allocator, typename ExtendedSig>
856 CUDA bool operator!=(const TFormula<Allocator, ExtendedSig>& lhs, const TFormula<Allocator, ExtendedSig>& rhs) {
857  return !(lhs == rhs);
858 }
859 
860 } // namespace lala
861 #endif
Definition: ast.hpp:38
constexpr AVar(const AVar &)=default
constexpr CUDA bool is_untyped() const
Definition: ast.hpp:61
constexpr CUDA int aty() const
Definition: ast.hpp:65
constexpr AVar & operator=(const AVar &)=default
constexpr CUDA AVar(AType atype, int var_id)
Definition: ast.hpp:53
constexpr AVar & operator=(AVar &&)=default
constexpr CUDA void type_as(AType aty)
Definition: ast.hpp:73
constexpr CUDA int vid() const
Definition: ast.hpp:69
constexpr CUDA AVar()
Definition: ast.hpp:41
constexpr AVar(AVar &&)=default
constexpr CUDA AVar(AType atype, size_t var_id)
Definition: ast.hpp:59
constexpr CUDA bool operator==(const AVar &other) const
Definition: ast.hpp:46
Definition: b.hpp:10
Definition: ast.hpp:286
CUDA const LogicSet & s() const
Definition: ast.hpp:571
static constexpr size_t Seq
Definition: ast.hpp:327
CUDA logic_int to_z() const
Definition: ast.hpp:538
CUDA Formula & data()
Definition: ast.hpp:396
battery::vector< this_type, Allocator > Sequence
Definition: ast.hpp:290
CUDA Sig sig() const
Definition: ast.hpp:587
CUDA TFormula(this_type &&other)
Definition: ast.hpp:343
friend class TFormula
Definition: ast.hpp:346
CUDA TFormula(Formula &&formula)
Definition: ast.hpp:339
CUDA AVar & v()
Definition: ast.hpp:649
static CUDA this_type make_exists(AType ty, LVar< Allocator > lvar, Sort< Allocator > ctype)
Definition: ast.hpp:474
CUDA NI this_type map_sig(Sig sig) const
Definition: ast.hpp:677
CUDA bool is_binary() const
Definition: ast.hpp:555
CUDA NI void inplace_map(Fun fun)
Definition: ast.hpp:717
CUDA this_type & eseq(size_t i)
Definition: ast.hpp:673
CUDA logic_bool & b()
Definition: ast.hpp:633
CUDA NI TFormula(const TFormula< Alloc2, ExtendedSig2 > &other, const Allocator &allocator=Allocator())
Definition: ast.hpp:349
static CUDA this_type make_set(LogicSet set, AType atype=UNTYPED)
Definition: ast.hpp:457
CUDA logic_int & z()
Definition: ast.hpp:637
static constexpr size_t R
Definition: ast.hpp:312
CUDA const Existential & exists() const
Definition: ast.hpp:583
CUDA ExtendedSig & esig()
Definition: ast.hpp:657
CUDA const this_type & seq(size_t i) const
Definition: ast.hpp:621
CUDA const ExtendedSig & esig() const
Definition: ast.hpp:613
static CUDA this_type make_false()
Definition: ast.hpp:437
static CUDA this_type make_true()
Definition: ast.hpp:436
constexpr CUDA bool is_untyped() const
Definition: ast.hpp:406
CUDA this_type & operator=(this_type &&rhs)
Definition: ast.hpp:391
TFormula< Allocator, ExtendedSig > this_type
Definition: ast.hpp:289
CUDA bool is_true() const
Definition: ast.hpp:530
CUDA const Sequence & eseq() const
Definition: ast.hpp:625
static CUDA this_type make_z(logic_int i, AType atype=UNTYPED)
Definition: ast.hpp:443
CUDA LogicSet & s()
Definition: ast.hpp:645
CUDA Sequence & eseq()
Definition: ast.hpp:669
CUDA bool is_false() const
Definition: ast.hpp:534
static CUDA this_type make_real(double lb, double ub, AType atype=UNTYPED)
Definition: ast.hpp:449
battery::tuple< LVar< Allocator >, Sort< Allocator > > Existential
Definition: ast.hpp:291
static constexpr size_t S
Definition: ast.hpp:315
static CUDA this_type make_unary(Sig sig, TFormula child, AType atype=UNTYPED, const Allocator &allocator=Allocator())
Definition: ast.hpp:510
CUDA const LVar< Allocator > & lv() const
Definition: ast.hpp:579
CUDA NI bool is_logical() const
Definition: ast.hpp:591
CUDA logic_bool b() const
Definition: ast.hpp:559
CUDA bool is_variable() const
Definition: ast.hpp:547
CUDA bool is_unary() const
Definition: ast.hpp:551
CUDA bool is(size_t kind) const
Definition: ast.hpp:526
static CUDA this_type make_nary(ExtendedSig esig, Sequence children, AType atype=UNTYPED)
Definition: ast.hpp:518
static constexpr size_t V
Definition: ast.hpp:318
static CUDA this_type make_bool(logic_bool b, AType atype=UNTYPED)
Definition: ast.hpp:439
CUDA bool is_constant() const
Definition: ast.hpp:543
CUDA void type_as(AType ty)
Definition: ast.hpp:399
CUDA const this_type & eseq(size_t i) const
Definition: ast.hpp:629
CUDA NI std::optional< Sort< allocator_type > > sort() const
Definition: ast.hpp:410
CUDA const Sequence & seq() const
Definition: ast.hpp:617
static CUDA this_type make_binary(TFormula lhs, Sig sig, TFormula rhs, AType atype=UNTYPED, const Allocator &allocator=Allocator(), bool flatten=true)
Definition: ast.hpp:514
CUDA Sig & sig()
Definition: ast.hpp:653
CUDA const logic_real & r() const
Definition: ast.hpp:567
CUDA AType type() const
Definition: ast.hpp:398
static constexpr size_t B
Definition: ast.hpp:306
CUDA TFormula(const this_type &other)
Definition: ast.hpp:342
Allocator allocator_type
Definition: ast.hpp:288
static CUDA this_type make_real(logic_real r, AType atype=UNTYPED)
Definition: ast.hpp:453
static constexpr size_t ESeq
Definition: ast.hpp:330
logic_set< this_type > LogicSet
Definition: ast.hpp:292
static CUDA this_type make_lvar(AType ty, LVar< Allocator > lvar)
Definition: ast.hpp:470
CUDA AVar v() const
Definition: ast.hpp:575
CUDA logic_real & r()
Definition: ast.hpp:641
CUDA this_type & seq(size_t i)
Definition: ast.hpp:665
CUDA NI this_type map_atype(AType aty) const
Definition: ast.hpp:684
CUDA NI bool is_comparison() const
Definition: ast.hpp:605
CUDA TFormula(AType uid, Formula &&formula)
Definition: ast.hpp:340
CUDA TFormula()
Definition: ast.hpp:338
CUDA NI bool is_predicate() const
Definition: ast.hpp:598
static CUDA this_type make_avar(AType ty, int vid)
Definition: ast.hpp:466
CUDA void print(bool print_atype=false) const
Definition: ast.hpp:845
CUDA void swap(this_type &other)
Definition: ast.hpp:381
CUDA logic_int z() const
Definition: ast.hpp:563
CUDA const Formula & data() const
Definition: ast.hpp:397
CUDA Sequence & seq()
Definition: ast.hpp:661
battery::variant< logic_bool, logic_int, logic_real, LogicSet, AVar, LVar< Allocator >, Existential, battery::tuple< Sig, Sequence >, battery::tuple< ExtendedSig, Sequence > > Formula
Definition: ast.hpp:303
CUDA NI this_type map(Fun fun)
Definition: ast.hpp:723
CUDA size_t index() const
Definition: ast.hpp:522
static constexpr size_t E
Definition: ast.hpp:324
static constexpr size_t LV
Definition: ast.hpp:321
static CUDA this_type make_avar(AVar v)
Definition: ast.hpp:462
CUDA static NI this_type make_nary(Sig sig, Sequence children, AType atype=UNTYPED, bool flatten=true)
Definition: ast.hpp:479
CUDA this_type & operator=(const this_type &rhs)
Definition: ast.hpp:386
static constexpr size_t Z
Definition: ast.hpp:309
Definition: ast.hpp:262
CUDA NI void print(const lala::Sig &sig)
Definition: ast.hpp:264
Definition: abstract_deps.hpp:14
battery::tuple< double, double > logic_real
Definition: sort.hpp:119
CUDA constexpr NI bool is_predicate(Sig sig)
Definition: ast.hpp:256
bool logic_bool
Definition: sort.hpp:109
CUDA NI const char * string_of_sig(Sig sig)
Definition: ast.hpp:121
constexpr CUDA bool operator==(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:504
long long int logic_int
Definition: sort.hpp:114
CUDA NI bool is_arithmetic_comparison(const F &f)
Definition: algorithm.hpp:360
Sig
Definition: ast.hpp:94
@ HULL
Unary function performing the convex hull of a set, e.g., .
Definition: ast.hpp:110
@ XOR
Logical connector.
Definition: ast.hpp:114
@ SIN
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ ITE
If-then-else.
Definition: ast.hpp:115
@ NEQ
Equality relations.
Definition: ast.hpp:112
@ SYMMETRIC_DIFFERENCE
Unary arithmetic function symbols.
Definition: ast.hpp:106
@ LEQ
Unary arithmetic function symbols.
Definition: ast.hpp:113
@ NOT
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ ACOS
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ IMPLY
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ TANH
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ TMOD
Truncated division, present in most programming languages, is defined as , i.e., it rounds towards ze...
Definition: ast.hpp:102
@ ATAN
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ ASIN
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ CARD
Cardinality function from set to integer.
Definition: ast.hpp:109
@ SUPSETEQ
Set inclusion predicates.
Definition: ast.hpp:107
@ MOD
Division and modulus over continuous domains (e.g., floating-point numbers and rational).
Definition: ast.hpp:101
@ DIFFERENCE
Unary arithmetic function symbols.
Definition: ast.hpp:106
@ ATANH
Trigonometric unary function symbols.
Definition: ast.hpp:100
@ CONVEX
Unary predicate, requiring .
Definition: ast.hpp:111
@ UNION
Unary arithmetic function symbols.
Definition: ast.hpp:106
@ OR
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ EQ
Unary arithmetic function symbols.
Definition: ast.hpp:112
@ ACOSH
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ NROOT
Unary arithmetic function symbols.
Definition: ast.hpp:99
@ GEQ
Unary arithmetic function symbols.
Definition: ast.hpp:113
@ ADD
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ IN
Set membership predicate.
Definition: ast.hpp:108
@ COS
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ POW
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ MIN
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ INTERSECTION
Unary arithmetic function symbols.
Definition: ast.hpp:106
@ LN
Square root, natural exponential and natural logarithm function symbols.
Definition: ast.hpp:98
@ SINH
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ EDIV
Unary arithmetic function symbols.
Definition: ast.hpp:105
@ DIV
Unary arithmetic function symbols.
Definition: ast.hpp:101
@ GT
Arithmetic comparison predicates. When applied to set, it corresponds to the lexicographic ordering o...
Definition: ast.hpp:113
@ FMOD
Floor division (Knuth D. (1972). The Art of Computer Programming, Vol 1, Fundamental Algorithms),...
Definition: ast.hpp:103
@ MAX
Binary arithmetic function symbols.
Definition: ast.hpp:97
@ SQRT
Unary arithmetic function symbols.
Definition: ast.hpp:98
@ LT
Unary arithmetic function symbols.
Definition: ast.hpp:113
@ TDIV
Unary arithmetic function symbols.
Definition: ast.hpp:102
@ FDIV
Unary arithmetic function symbols.
Definition: ast.hpp:103
@ EXP
Unary arithmetic function symbols.
Definition: ast.hpp:98
@ COMPLEMENT
Set functions.
Definition: ast.hpp:106
@ TAN
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ SUBSETEQ
Unary arithmetic function symbols.
Definition: ast.hpp:107
@ AND
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ MAXIMIZE
Unary "meta-predicate" indicating that its argument must be maximized, according to the increasing or...
Definition: ast.hpp:116
@ SUBSET
Unary arithmetic function symbols.
Definition: ast.hpp:107
@ MINIMIZE
Same as MAXIMIZE, but for minimization.
Definition: ast.hpp:117
@ EQUIV
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ ABS
Unary arithmetic function symbols.
Definition: ast.hpp:96
@ ASINH
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ SUB
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ SUPSET
Unary arithmetic function symbols.
Definition: ast.hpp:107
@ COSH
Unary arithmetic function symbols.
Definition: ast.hpp:100
@ MUL
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ CMOD
Ceil division is defined as . Modulus is defined as .
Definition: ast.hpp:104
@ LOG
nth root and logarithm to base (both binary function symbols).
Definition: ast.hpp:99
@ CDIV
Unary arithmetic function symbols.
Definition: ast.hpp:104
@ NEG
Unary arithmetic function symbols.
Definition: ast.hpp:96
@ EMOD
Euclidean division (Boute T. R. (1992). The Euclidean definition of the functions div and mod)....
Definition: ast.hpp:105
CUDA constexpr NI bool is_logical(Sig sig)
Definition: ast.hpp:252
battery::vector< battery::tuple< F, F >, typename F::allocator_type > logic_set
Definition: sort.hpp:127
CUDA constexpr NI bool is_associative(Sig sig)
Definition: ast.hpp:238
int AType
Definition: sort.hpp:18
CUDA constexpr NI bool is_modulo(Sig sig)
Definition: ast.hpp:234
CUDA NI const char * string_of_sig_txt(Sig sig)
Definition: ast.hpp:192
CUDA constexpr NI bool is_division(Sig sig)
Definition: ast.hpp:230
IKind
Definition: ast.hpp:28
battery::string< Allocator > LVar
Definition: ast.hpp:25
CUDA constexpr NI bool is_prefix(Sig sig)
Definition: ast.hpp:226
CUDA constexpr NI bool is_commutative(Sig sig)
Definition: ast.hpp:243
#define UNTYPED
Definition: sort.hpp:21
Definition: sort.hpp:26