Lattice Land Core Library
Loading...
Searching...
No Matches
lala Namespace Reference

Namespaces

namespace  local
 

Classes

class  AbstractDeps
 
class  ArithBound
 
struct  AtomicExtraction
 
class  AVar
 
class  B
 
class  CartesianProduct
 
struct  DispatchIndex
 
class  FixpointSubsetCPU
 
class  FlatUniverse
 
class  GaussSeidelIteration
 
struct  HashMapVarIndex
 
class  IDiagnostics
 
class  Interval
 
struct  ListVarIndex
 
class  NBitset
 
struct  NonAtomicExtraction
 
struct  PreFLB
 
struct  PreFUB
 
struct  PreSDec
 
struct  PreSInc
 
struct  PreZLB
 
struct  PreZUB
 
class  Simplifier
 
struct  Sort
 
class  TFormula
 
class  VarEnv
 
struct  Variable
 
class  VStore
 

Typedefs

template<class A >
using abstract_ptr = battery::shared_ptr<A, typename A::allocator_type>
 
template<class Allocator >
using LVar = battery::string<Allocator>
 
using AType = int
 
using logic_bool = bool
 
using logic_int = long long int
 
using logic_real = battery::tuple<double, double>
 
template<class F >
using logic_set = battery::vector<battery::tuple<F, F>, typename F::allocator_type>
 
template<class VT , class Mem >
using ZLB = ArithBound<PreZLB<VT>, Mem>
 
template<class VT , class Mem >
using ZUB = ArithBound<PreZUB<VT>, Mem>
 
template<class VT , class Mem >
using FLB = ArithBound<PreFLB<VT>, Mem>
 
template<class VT , class Mem >
using FUB = ArithBound<PreFUB<VT>, Mem>
 
template<class VT , class Mem >
using ZFlat = FlatUniverse<PreZUB<VT>, Mem>
 
template<class VT , class Mem >
using FFlat = FlatUniverse<PreFUB<VT>, Mem>
 

Enumerations

enum class  IKind { ASK , TELL }
 
enum  Sig {
  NEG , ABS , ADD , SUB ,
  MUL , POW , MIN , MAX ,
  SQRT , EXP , LN , NROOT ,
  LOG , SIN , COS , TAN ,
  ASIN , ACOS , ATAN , SINH ,
  COSH , TANH , ASINH , ACOSH ,
  ATANH , DIV , MOD , TDIV ,
  TMOD , FDIV , FMOD , CDIV ,
  CMOD , EDIV , EMOD , UNION ,
  INTERSECTION , DIFFERENCE , SYMMETRIC_DIFFERENCE , COMPLEMENT ,
  SUBSET , SUBSETEQ , SUPSET , SUPSETEQ ,
  IN , CARD , HULL , CONVEX ,
  EQ , NEQ , LEQ , GEQ ,
  LT , GT , AND , OR ,
  IMPLY , EQUIV , NOT , XOR ,
  ITE , MAXIMIZE , MINIMIZE
}
 

Functions

template<size_t i, class... As>
CUDA constexpr const CartesianProduct< As... >::template type_of< i > & project (const CartesianProduct< As... > &cp)
 Similar to cp.template project<i>(), just to avoid the ".template" syntax.
 
template<size_t i, class... As>
CUDA constexpr CartesianProduct< As... >::template type_of< i > & project (CartesianProduct< As... > &cp)
 
template<class... As, class... Bs>
CUDA constexpr auto fjoin (const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
 
template<class... As, class... Bs>
CUDA constexpr auto fmeet (const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
 
template<class... As, class... Bs>
CUDA constexpr bool operator< (const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
 
template<class... As, class... Bs>
CUDA constexpr bool operator> (const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
 
template<class... As, class... Bs>
CUDA constexpr bool operator== (const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
 
template<class A , class... As>
std::ostream & operator<< (std::ostream &s, const CartesianProduct< A, As... > &cp)
 
template<class L , IKind kind, bool diagnose = false, class F >
CUDA bool ginterpret_true (const F &f, IDiagnostics &diagnostics)
 
template<IKind kind, bool diagnose = false, class A , class F , class Env , class I >
CUDA bool ginterpret_in (const A &a, const F &f, Env &env, I &intermediate, IDiagnostics &diagnostics)
 
template<IKind kind, bool diagnose = false, class F , class Env , class U >
CUDA bool ginterpret_in (const F &f, const Env &env, U &value, IDiagnostics &diagnostics)
 
template<IKind kind, bool diagnose = false, class A , class F , class Env , class I >
CUDA bool top_level_ginterpret_in (const A &a, const F &f, Env &env, I &intermediate, IDiagnostics &diagnostics)
 
template<class A , class Alloc = battery::standard_allocator, class Env >
CUDA A make_top (Env &env, Alloc alloc=Alloc{})
 
template<bool diagnose = false, class TellAlloc = battery::standard_allocator, class F , class Env , class L >
CUDA bool interpret_and_tell (const F &f, Env &env, L &value, IDiagnostics &diagnostics, TellAlloc tell_alloc=TellAlloc{})
 
template<class A , bool diagnose = false, class F , class Env , class TellAlloc = typename A::allocator_type>
CUDA std::optional< A > create_and_interpret_and_tell (const F &f, Env &env, IDiagnostics &diagnostics, typename A::allocator_type alloc=typename A::allocator_type{}, TellAlloc tell_alloc=TellAlloc{})
 
template<class L , class K >
CUDA constexpr auto meet (const Interval< L > &, const Interval< K > &)
 
template<class L , class K >
CUDA constexpr auto fjoin (const Interval< L > &a, const Interval< K > &b)
 
template<class L , class K >
CUDA constexpr auto fmeet (const Interval< L > &a, const Interval< K > &b)
 
template<class L , class K >
CUDA constexpr bool operator< (const Interval< L > &a, const Interval< K > &b)
 
template<class L , class K >
CUDA constexpr bool operator> (const Interval< L > &a, const Interval< K > &b)
 
template<class L , class K >
CUDA constexpr bool operator== (const Interval< L > &a, const Interval< K > &b)
 
template<class L >
std::ostream & operator<< (std::ostream &s, const Interval< L > &itv)
 
template<class Allocator , class ExtendedSig >
CUDA NI bool is_v_op_constant (const TFormula< Allocator, ExtendedSig > &f, Sig sig)
 
template<class Allocator , class ExtendedSig >
CUDA NI bool is_v_op_z (const TFormula< Allocator, ExtendedSig > &f, Sig sig)
 
template<class Allocator , class ExtendedSig >
CUDA NI bool is_var_equality (const TFormula< Allocator, ExtendedSig > &f)
 
template<class Allocator >
CUDA NI TFormula< Allocator > make_v_op_z (LVar< Allocator > v, Sig sig, logic_int z, AType aty=UNTYPED, const Allocator &allocator=Allocator())
 
template<class Allocator >
CUDA NI TFormula< Allocator > make_v_op_z (AVar v, Sig sig, logic_int z, AType aty=UNTYPED, const Allocator &allocator=Allocator())
 
template<class Allocator >
CUDA Sig geq_of_constant (const TFormula< Allocator > &f)
 
template<class Allocator >
CUDA Sig leq_of_constant (const TFormula< Allocator > &f)
 
template<typename Allocator , typename ExtendedSig >
CUDA const TFormula< Allocator, ExtendedSig > & var_in (const TFormula< Allocator, ExtendedSig > &f)
 
template<class F >
CUDA NI int num_vars (const F &f)
 
template<class F >
CUDA size_t num_quantified_vars (const F &f)
 
template<class F >
CUDA size_t num_quantified_vars (const F &f, AType aty)
 
template<class F >
CUDA size_t num_constraints (const F &f)
 
template<class F >
CUDA NI AType type_of_conjunction (const typename F::Sequence &seq)
 
template<class F >
CUDA NI battery::tuple< F, F > extract_ty (const F &f, AType ty)
 
template<class F >
CUDA NI std::optional< F > negate (const F &f)
 
template<class F >
CUDA NI std::optional< F > de_morgan_law (Sig sig_neg, const F &f)
 
template<class F >
CUDA NI std::optional< F > negate_eq (const F &f)
 
CUDA Sig negate_arithmetic_comparison (Sig sig)
 
template<class F >
CUDA NI bool is_arithmetic_comparison (const F &f)
 
template<class F >
CUDA NI bool is_set_comparison (const F &f)
 
template<class F >
CUDA NI bool is_comparison (const F &f)
 
CUDA NI Sig converse_comparison (Sig sig)
 
template<class F , class Env >
CUDA NI void map_avar_to_lvar (F &f, const Env &env, bool erase_type=false)
 
template<class F >
CUDA NI F eval (const F &f)
 
template<class F >
CUDA NI F normalize (const F &f)
 
template<class F >
CUDA F decompose_in_constraint (const F &f, const typename F::allocator_type &alloc=typename F::allocator_type())
 
template<class F >
CUDA F decompose_arith_neq_constraint (const F &f, const typename F::allocator_type &alloc=typename F::allocator_type())
 
CUDA NI const char * string_of_sig (Sig sig)
 
CUDA NI constexpr bool is_prefix (Sig sig)
 
CUDA NI constexpr bool is_division (Sig sig)
 
CUDA NI constexpr bool is_modulo (Sig sig)
 
CUDA NI constexpr bool is_associative (Sig sig)
 
CUDA NI constexpr bool is_arithmetic_comparison (Sig sig)
 
CUDA NI constexpr bool is_logical (Sig sig)
 
CUDA NI constexpr bool is_predicate (Sig sig)
 
template<typename Allocator , typename ExtendedSig >
CUDA bool operator== (const TFormula< Allocator, ExtendedSig > &lhs, const TFormula< Allocator, ExtendedSig > &rhs)
 
template<class F , class Env >
CUDA NI std::optional< std::reference_wrapper< const typename Env::variable_type > > var_in (const F &f, const Env &env)
 
template<class Alloc1 , class Alloc2 >
CUDA NI bool operator== (const Sort< Alloc1 > &lhs, const Sort< Alloc2 > &rhs)
 
template<class F , class Env = VarEnv<battery::standard_allocator>>
ternarize (const F &f, const Env &env=Env(), bool ternarize_all=false)
 
template<class A , class R = A>
project_fun (Sig fun, const A &a, const A &b)
 
template<class A , class R = A>
project_fun (Sig fun, const A &a)
 
template<class LDual , class L >
CUDA constexpr LDual dual_bound (const L &x)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr ArithBound< Pre, battery::local_memory > fjoin (const ArithBound< Pre, M1 > &a, const ArithBound< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr ArithBound< Pre, battery::local_memory > fmeet (const ArithBound< Pre, M1 > &a, const ArithBound< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator< (const ArithBound< Pre, M1 > &a, const ArithBound< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator> (const ArithBound< Pre, M1 > &a, const ArithBound< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator== (const ArithBound< Pre, M1 > &a, const ArithBound< Pre, M2 > &b)
 
template<class Pre , class M >
std::ostream & operator<< (std::ostream &s, const ArithBound< Pre, M > &a)
 
template<class Pre >
CUDA constexpr FlatUniverse< Pre, battery::local_memory > fjoin (const FlatUniverse< Pre, battery::local_memory > &a, const FlatUniverse< Pre, battery::local_memory > &b)
 
template<class Pre >
CUDA constexpr FlatUniverse< Pre, battery::local_memory > fmeet (const FlatUniverse< Pre, battery::local_memory > &a, const FlatUniverse< Pre, battery::local_memory > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator< (const FlatUniverse< Pre, M1 > &a, const FlatUniverse< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator> (const FlatUniverse< Pre, M1 > &a, const FlatUniverse< Pre, M2 > &b)
 
template<class Pre , class M1 , class M2 >
CUDA constexpr bool operator== (const FlatUniverse< Pre, M1 > &a, const FlatUniverse< Pre, M2 > &b)
 
template<class Pre , class M >
std::ostream & operator<< (std::ostream &s, const FlatUniverse< Pre, M > &a)
 
template<size_t N, class M1 , class M2 , class T >
CUDA constexpr NBitset< N, battery::local_memory, T > fjoin (const NBitset< N, M1, T > &a, const NBitset< N, M2, T > &b)
 
template<size_t N, class M1 , class M2 , class T >
CUDA constexpr NBitset< N, battery::local_memory, T > fmeet (const NBitset< N, M1, T > &a, const NBitset< N, M2, T > &b)
 
template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool operator< (const NBitset< N, M1, T > &a, const NBitset< N, M2, T > &b)
 
template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool operator> (const NBitset< N, M1, T > &a, const NBitset< N, M2, T > &b)
 
template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool operator== (const NBitset< N, M1, T > &a, const NBitset< N, M2, T > &b)
 
template<size_t N, class M , class T >
std::ostream & operator<< (std::ostream &s, const NBitset< N, M, T > &a)
 
template<class L , class K , class Alloc >
CUDA auto fmeet (const VStore< L, Alloc > &a, const VStore< K, Alloc > &b)
 
template<class L , class K , class Alloc >
CUDA auto fjoin (const VStore< L, Alloc > &a, const VStore< K, Alloc > &b)
 
template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool operator< (const VStore< L, Alloc1 > &a, const VStore< K, Alloc2 > &b)
 
template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool operator> (const VStore< L, Alloc1 > &a, const VStore< K, Alloc2 > &b)
 
template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool operator== (const VStore< L, Alloc1 > &a, const VStore< K, Alloc2 > &b)
 
template<class L , class Alloc >
std::ostream & operator<< (std::ostream &s, const VStore< L, Alloc > &vstore)
 

Detailed Description

This file provides an extended interface to interpret formulas in abstract domains and abstract universes. It also provides a unified interface for tell and ask interpretation using a template parameter IKind.

A pre-abstract universe is a lattice (with usual operations join, order, ...) equipped with a simple logical interpretation function and a next/prev functions. We consider totally ordered pre-abstract universes with a downset semantics. For any lattice \( L \), we consider an element \( a \in L \) to represent all the concrete elements equal to or below it. This set is called the downset of \( a \) and is denoted \( \mathord{\downarrow}{a} \). The concretization function \( \gamma \) formalizes this idea: \( \gamma(a) = \{x \mapsto b \;|\; b \in \mathord{\downarrow}{a} \cap U \} \) where \( U \) is the universe of discourse. The intersection with \( U \) is necessary to remove potential elements in the abstract universe that are not in the concrete universe of discourse (e.g., \( -\infty, \infty \) below).

The downset semantics associates each element of a lattice to its concrete downset. It is possible to decide that each element is associated to the concrete upset instead. Doing so will reverse our usage of the lattice-theoretic operations (join instead of meet, <= instead of >=, etc.). Instead of considering the upset semantics, it is more convenient to consider the downset semantics of the dual lattice.

Example: The lattice of increasing integer \( \mathit{ZUB} = \langle \{-\infty, \ldots, -2, -1, 0, 1, 2, \ldots, \infty\}, \leq \rangle \) is ordered by the natural arithmetic comparison operator, it represents an upper bound on the set of integers represented. Using the downset semantics, we can represent simple constraints such as \( x \leq 3 \), in which case the downset \( \mathord{\downarrow}{3} = \{\ldots, 1, 2, 3\} \) represents all the values of \( x \) satisfying the constraints \( x \leq 3 \), that is, the solutions of the constraints. By taking the upset semantics of \( \mathit{ZUB} \), we can represent constraints such as \( x \geq 3 \). Alternatively, we can take the dual lattice of decreasing integers \( \mathit{ZLB} = \langle \{\infty, \ldots, 2, 1, 0, -1, -2, \ldots, -\infty\}, \geq \rangle \). The downset semantics of \( \mathit{ZLB} \) corresponds to the upset semantics of \( \mathit{ZUB} \).

From a pre-abstract universe, we obtain an abstract universe using the Universe class below. We also define various aliases to abstract universes such as ZLB, ZUB, etc.

Typedef Documentation

◆ abstract_ptr

template<class A >
using lala::abstract_ptr = battery::shared_ptr<A, typename A::allocator_type>

◆ LVar

template<class Allocator >
using lala::LVar = battery::string<Allocator>

A "logical variable" is just the name of the variable.

◆ AType

using lala::AType = int

Each abstract domain is uniquely identified by an UID. We call it an abstract type. Each formula (and recursively, its subformulas) is assigned to an abstract type indicating in what abstract domain this formula should be interpreted.

◆ logic_bool

using lala::logic_bool = bool

The type of Boolean used in logic formulas.

◆ logic_int

using lala::logic_int = long long int

The type of integers used in logic formulas. Integers are represented by the set \( \{-\infty, \infty\} \cup Z (\text{ with} Z \subset \mathbb{Z}) \). The minimal and maximal values of logic_int represents \( -\infty \) and \( \infty \) respectively.

◆ logic_real

using lala::logic_real = battery::tuple<double, double>

The type of real numbers used in logic formulas. Real numbers are approximated by the set \( \mathbb{F} \times \mathbb{F} \). When a real number \( r \in \mathbb{R} \) is also a floating-point number, then it is represented by \( (r, r) \), otherwise it is represented by \( (\lfloor r \rfloor, \lceil r \rceil) \) such that \( \lfloor r \rfloor < r < \lceil r \rceil \) and there is no floating-point number \( f \) such that \( \lfloor r \rfloor < f < \lceil r \rceil \).

◆ logic_set

template<class F >
using lala::logic_set = battery::vector<battery::tuple<F, F>, typename F::allocator_type>

A set is parametric in a universe of discourse. For instance, logic_set<F>, with F representing an integer constant, is a set of integers. Sets are defined in extension: we explicitly list the values belonging to the set. To avoid using too much memory with large sets, we use an interval representation, e.g., \( \{1..3, 5..5, 10..12\} = \{1, 2, 3, 5, 10, 11, 12\} \). When sets occur in intervals, they are ordered by set inclusion, e.g., \( \{\{1..2\}..\{1..4\}\} = \{\{1,2\}, \{1,2,3\}, \{1,2,4\}, \{1,2,3,4\}\} \).

◆ ZLB

template<class VT , class Mem >
using lala::ZLB = ArithBound<PreZLB<VT>, Mem>

Lattice of integer lower bounds.

◆ ZUB

template<class VT , class Mem >
using lala::ZUB = ArithBound<PreZUB<VT>, Mem>

Lattice of integer upper bounds.

◆ FLB

template<class VT , class Mem >
using lala::FLB = ArithBound<PreFLB<VT>, Mem>

Lattice of floating-point lower bounds.

◆ FUB

template<class VT , class Mem >
using lala::FUB = ArithBound<PreFUB<VT>, Mem>

Lattice of floating-point upper bounds.

◆ ZFlat

template<class VT , class Mem >
using lala::ZFlat = FlatUniverse<PreZUB<VT>, Mem>

Lattice of flat integers.

◆ FFlat

template<class VT , class Mem >
using lala::FFlat = FlatUniverse<PreFUB<VT>, Mem>

Lattice of flat floating-point numbers.

Enumeration Type Documentation

◆ IKind

enum class lala::IKind
strong

The kind of interpretation operations.

Enumerator
ASK 
TELL 

◆ Sig

enum lala::Sig

A first-order signature is a triple \( (X, F, P) \) where \( X \) is the set of variables, \( F \) the set of function symbols and \( P \) the set of predicates. We represent \( X \) by strings (see LVar), while \( F \) and \( P \) are described in the following enumeration Sig. For programming conveniency, we suppose that logical connectors are included in the set of predicates and thus are in the signature as well. Finally, function symbols and predicates are at the "same level". Hence a predicate can occur as the argument of a function, which is convenient when modelling, consider for example a cardinality constraint: \( ((x > 4) + (y < 4) + (z = 3)) \neq 2 \).

Symbols are sometimes overloaded across different universe of discourse. For instance, ADD can be used over integers, reals and even set of integers (pairwise addition).

Division and modulus are defined as usual over continuous domains such as rational and real numbers. However, it gets more tricky when defined over discrete domains such as integers and floating-point numbers, since there is not a single definition of division and modulus. The various kinds of discrete divisions are explained in (Leijend D. (2003). Division and Modulus for Computer Scientists), and we add four of those definitions to the logical signature. There are several use-cases of modulus and division: If you write a constraint model, you probably want to use euclidean division and modulus (EDIV, EMOD) as this is the most "mathematical" definition. If you intend to model the semantics of a programming language, you should use the same kind of division as the one present in your programming language (most likely truncated division).

Enumerator
NEG 

Unary arithmetic function symbols.

ABS 

Unary arithmetic function symbols.

ADD 

Unary arithmetic function symbols.

SUB 

Unary arithmetic function symbols.

MUL 

Unary arithmetic function symbols.

POW 

Unary arithmetic function symbols.

MIN 

Unary arithmetic function symbols.

MAX 

Binary arithmetic function symbols.

SQRT 

Unary arithmetic function symbols.

EXP 

Unary arithmetic function symbols.

LN 

Square root, natural exponential and natural logarithm function symbols.

NROOT 

Unary arithmetic function symbols.

LOG 

nth root and logarithm to base (both binary function symbols).

SIN 

Unary arithmetic function symbols.

COS 

Unary arithmetic function symbols.

TAN 

Unary arithmetic function symbols.

ASIN 

Unary arithmetic function symbols.

ACOS 

Unary arithmetic function symbols.

ATAN 

Unary arithmetic function symbols.

SINH 

Unary arithmetic function symbols.

COSH 

Unary arithmetic function symbols.

TANH 

Unary arithmetic function symbols.

ASINH 

Unary arithmetic function symbols.

ACOSH 

Unary arithmetic function symbols.

ATANH 

Trigonometric unary function symbols.

DIV 

Unary arithmetic function symbols.

MOD 

Division and modulus over continuous domains (e.g., floating-point numbers and rational).

TDIV 

Unary arithmetic function symbols.

TMOD 

Truncated division, present in most programming languages, is defined as \( a\,\mathbf{tdiv}\,b = \mathit{trunc}(a/b) \), i.e., it rounds towards zero. Modulus is defined as \( a\,\mathbf{tmod}\,b = a - b * (a\,\mathbf{tdiv}\,b) \).

FDIV 

Unary arithmetic function symbols.

FMOD 

Floor division (Knuth D. (1972). The Art of Computer Programming, Vol 1, Fundamental Algorithms), is defined as \( a\,\mathbf{fdiv}\,b = \lfloor a/b \rfloor \), i.e., it rounds towards negative infinity. Modulus is defined as \( a\,\mathbf{fmod}\,b = a - b * (a\,\mathbf{fdiv}\,b) \).

CDIV 

Unary arithmetic function symbols.

CMOD 

Ceil division is defined as \( a\,\mathbf{cdiv}\,b = \lceil a/b \rceil \). Modulus is defined as \( a\,\mathbf{cmod}\,b = a - b * (a\,\mathbf{cdiv}\,b) \).

EDIV 

Unary arithmetic function symbols.

EMOD 

Euclidean division (Boute T. R. (1992). The Euclidean definition of the functions div and mod). The properties satisfy by this division are: (1) \( a\,\mathbf{ediv}\,b \in \mathbb{Z} \), (2) \( a = b * (a\,\mathbf{ediv}\,b) + (a\,\mathbf{emod}\,b) \) and (3) \( 0 \leq a\,\mathbf{emod}\,b < |b|\). Further, note that Euclidean division satisfies \( a\,\mathbf{ediv}\,(-b) = -(a\,\mathbf{ediv}\,b) \) and \( a\,\mathbf{emod}\,(-b) = a\,\mathbf{emod}\,b \).

UNION 

Unary arithmetic function symbols.

INTERSECTION 

Unary arithmetic function symbols.

DIFFERENCE 

Unary arithmetic function symbols.

SYMMETRIC_DIFFERENCE 

Unary arithmetic function symbols.

COMPLEMENT 

Set functions.

SUBSET 

Unary arithmetic function symbols.

SUBSETEQ 

Unary arithmetic function symbols.

SUPSET 

Unary arithmetic function symbols.

SUPSETEQ 

Set inclusion predicates.

IN 

Set membership predicate.

CARD 

Cardinality function from set to integer.

HULL 

Unary function performing the convex hull of a set, e.g., \( \mathit{hull}(s) = \{x \;|\; \mathit{min}(s) \leq x \leq \mathit{max}(s) \} \).

CONVEX 

Unary predicate, requiring \( s = \mathit{hull}(s) \).

EQ 

Unary arithmetic function symbols.

NEQ 

Equality relations.

LEQ 

Unary arithmetic function symbols.

GEQ 

Unary arithmetic function symbols.

LT 

Unary arithmetic function symbols.

GT 

Arithmetic comparison predicates. When applied to set, it corresponds to the lexicographic ordering of the sorted set according the underlying natural ordering of the elements in the set.

AND 

Unary arithmetic function symbols.

OR 

Unary arithmetic function symbols.

IMPLY 

Unary arithmetic function symbols.

EQUIV 

Unary arithmetic function symbols.

NOT 

Unary arithmetic function symbols.

XOR 

Logical connector.

ITE 

If-then-else.

MAXIMIZE 

Unary "meta-predicate" indicating that its argument must be maximized, according to the increasing ordering of the underlying universe of discourse. This is not a predicate because it is defined on the solutions space of the whole formulas.

MINIMIZE 

Same as MAXIMIZE, but for minimization.

Function Documentation

◆ project() [1/2]

template<size_t i, class... As>
CUDA constexpr const CartesianProduct< As... >::template type_of< i > & lala::project ( const CartesianProduct< As... > & cp)
constexpr

Similar to cp.template project<i>(), just to avoid the ".template" syntax.

◆ project() [2/2]

template<size_t i, class... As>
CUDA constexpr CartesianProduct< As... >::template type_of< i > & lala::project ( CartesianProduct< As... > & cp)
constexpr

◆ fjoin() [1/6]

template<class... As, class... Bs>
CUDA constexpr auto lala::fjoin ( const CartesianProduct< As... > & a,
const CartesianProduct< Bs... > & b )
constexpr

\( (a_1, \ldots, a_n) \sqcup (b_1, \ldots, b_n) = (a_1 \sqcup_1 b_1, \ldots, a_n \sqcup_n b_n) \)

◆ fmeet() [1/6]

template<class... As, class... Bs>
CUDA constexpr auto lala::fmeet ( const CartesianProduct< As... > & a,
const CartesianProduct< Bs... > & b )
constexpr

\( (a_1, \ldots, a_n) \sqcap (b_1, \ldots, b_n) = (a_1 \sqcap_1 b_1, \ldots, a_n \sqcap_n b_n) \)

◆ operator<() [1/6]

template<class... As, class... Bs>
CUDA constexpr bool lala::operator< ( const CartesianProduct< As... > & a,
const CartesianProduct< Bs... > & b )
constexpr

◆ operator>() [1/6]

template<class... As, class... Bs>
CUDA constexpr bool lala::operator> ( const CartesianProduct< As... > & a,
const CartesianProduct< Bs... > & b )
constexpr

◆ operator==() [1/8]

template<class... As, class... Bs>
CUDA constexpr bool lala::operator== ( const CartesianProduct< As... > & a,
const CartesianProduct< Bs... > & b )
constexpr

◆ operator<<() [1/6]

template<class A , class... As>
std::ostream & lala::operator<< ( std::ostream & s,
const CartesianProduct< A, As... > & cp )

◆ ginterpret_true()

template<class L , IKind kind, bool diagnose = false, class F >
CUDA bool lala::ginterpret_true ( const F & f,
IDiagnostics & diagnostics )

Interpret true in the lattice L.

Returns
true if L preserves the top element w.r.t. the concrete domain or if true is interpreted by under-approximation (kind == ASK).

◆ ginterpret_in() [1/2]

template<IKind kind, bool diagnose = false, class A , class F , class Env , class I >
CUDA bool lala::ginterpret_in ( const A & a,
const F & f,
Env & env,
I & intermediate,
IDiagnostics & diagnostics )

This function provides an extended and unified interface to ask and tell interpretation of formula in abstract domains. It provides default interpretation for common formulas such as true, false and conjunction of formulas whenever A satisfies some lattice-theoretic conditions.

◆ ginterpret_in() [2/2]

template<IKind kind, bool diagnose = false, class F , class Env , class U >
CUDA bool lala::ginterpret_in ( const F & f,
const Env & env,
U & value,
IDiagnostics & diagnostics )

This function provides an extended and unified interface to ask and tell interpretation of formula in abstract universes. It provides default interpretation for common formulas such as true, false, conjunction and disjunction of formulas whenever U satisfies some lattice-theoretic conditions.

◆ top_level_ginterpret_in()

template<IKind kind, bool diagnose = false, class A , class F , class Env , class I >
CUDA bool lala::top_level_ginterpret_in ( const A & a,
const F & f,
Env & env,
I & intermediate,
IDiagnostics & diagnostics )

Top-level version of ginterpret_in, we restore env and intermediate in case of failure.

◆ make_top()

template<class A , class Alloc = battery::standard_allocator, class Env >
CUDA A lala::make_top ( Env & env,
Alloc alloc = Alloc{} )

◆ interpret_and_tell()

template<bool diagnose = false, class TellAlloc = battery::standard_allocator, class F , class Env , class L >
CUDA bool lala::interpret_and_tell ( const F & f,
Env & env,
L & value,
IDiagnostics & diagnostics,
TellAlloc tell_alloc = TellAlloc{} )

◆ create_and_interpret_and_tell()

template<class A , bool diagnose = false, class F , class Env , class TellAlloc = typename A::allocator_type>
CUDA std::optional< A > lala::create_and_interpret_and_tell ( const F & f,
Env & env,
IDiagnostics & diagnostics,
typename A::allocator_type alloc = typename A::allocator_type{},
TellAlloc tell_alloc = TellAlloc{} )

◆ meet()

template<class L , class K >
CUDA constexpr auto lala::meet ( const Interval< L > & ,
const Interval< K > &  )
constexpr

◆ fjoin() [2/6]

template<class L , class K >
CUDA constexpr auto lala::fjoin ( const Interval< L > & a,
const Interval< K > & b )
constexpr

◆ fmeet() [2/6]

template<class L , class K >
CUDA constexpr auto lala::fmeet ( const Interval< L > & a,
const Interval< K > & b )
constexpr

◆ operator<() [2/6]

template<class L , class K >
CUDA constexpr bool lala::operator< ( const Interval< L > & a,
const Interval< K > & b )
constexpr

◆ operator>() [2/6]

template<class L , class K >
CUDA constexpr bool lala::operator> ( const Interval< L > & a,
const Interval< K > & b )
constexpr

◆ operator==() [2/8]

template<class L , class K >
CUDA constexpr bool lala::operator== ( const Interval< L > & a,
const Interval< K > & b )
constexpr

◆ operator<<() [2/6]

template<class L >
std::ostream & lala::operator<< ( std::ostream & s,
const Interval< L > & itv )

◆ is_v_op_constant()

template<class Allocator , class ExtendedSig >
CUDA NI bool lala::is_v_op_constant ( const TFormula< Allocator, ExtendedSig > & f,
Sig sig )
Returns
true if the formula f has the shape variable <sig> constant.

◆ is_v_op_z()

template<class Allocator , class ExtendedSig >
CUDA NI bool lala::is_v_op_z ( const TFormula< Allocator, ExtendedSig > & f,
Sig sig )
Returns
true if the formula f has the shape variable op integer constant, e.g., x < 4.

◆ is_var_equality()

template<class Allocator , class ExtendedSig >
CUDA NI bool lala::is_var_equality ( const TFormula< Allocator, ExtendedSig > & f)
Returns
true if the formula f has the shape variable = variable or variable <=> variable.

◆ make_v_op_z() [1/2]

template<class Allocator >
CUDA NI TFormula< Allocator > lala::make_v_op_z ( LVar< Allocator > v,
Sig sig,
logic_int z,
AType aty = UNTYPED,
const Allocator & allocator = Allocator() )

◆ make_v_op_z() [2/2]

template<class Allocator >
CUDA NI TFormula< Allocator > lala::make_v_op_z ( AVar v,
Sig sig,
logic_int z,
AType aty = UNTYPED,
const Allocator & allocator = Allocator() )

◆ geq_of_constant()

template<class Allocator >
CUDA Sig lala::geq_of_constant ( const TFormula< Allocator > & f)

◆ leq_of_constant()

template<class Allocator >
CUDA Sig lala::leq_of_constant ( const TFormula< Allocator > & f)

◆ var_in() [1/2]

template<typename Allocator , typename ExtendedSig >
CUDA const TFormula< Allocator, ExtendedSig > & lala::var_in ( const TFormula< Allocator, ExtendedSig > & f)
Returns
The first variable occurring in the formula, or any other subformula if the formula does not contain a variable. It returns either a logical variable, an abstract variable or a quantifier.

◆ num_vars()

template<class F >
CUDA NI int lala::num_vars ( const F & f)
Returns
The number of variables occurring in the formula F including existential quantifier, logical variables and abstract variables. Each occurrence of a variable is added up (duplicates are counted).

◆ num_quantified_vars() [1/2]

template<class F >
CUDA size_t lala::num_quantified_vars ( const F & f)
Returns
The number of existential quantifiers.

◆ num_quantified_vars() [2/2]

template<class F >
CUDA size_t lala::num_quantified_vars ( const F & f,
AType aty )
Returns
The number of variables occurring in an existential quantifier that have type aty.

◆ num_constraints()

template<class F >
CUDA size_t lala::num_constraints ( const F & f)

◆ type_of_conjunction()

template<class F >
CUDA NI AType lala::type_of_conjunction ( const typename F::Sequence & seq)

◆ extract_ty()

template<class F >
CUDA NI battery::tuple< F, F > lala::extract_ty ( const F & f,
AType ty )

Given a conjunctive formula f of the form \( c_1 \land ... \land c_n \), it returns a pair \( \langle c_i \land .. \land c_j, c_k \land ... \land c_l \rangle \) such that the first component contains all formulas with the type ty, and the second component, all other formulas.

◆ negate()

template<class F >
CUDA NI std::optional< F > lala::negate ( const F & f)

◆ de_morgan_law()

template<class F >
CUDA NI std::optional< F > lala::de_morgan_law ( Sig sig_neg,
const F & f )

not(f1 \/ ... \/ fn) --> not(f1) /\ ... /\ not(fn) not(f1 /\ ... /\ fn) --> not(f1) \/ ... \/ not(fn)

◆ negate_eq()

template<class F >
CUDA NI std::optional< F > lala::negate_eq ( const F & f)

◆ negate_arithmetic_comparison()

CUDA Sig lala::negate_arithmetic_comparison ( Sig sig)

◆ is_arithmetic_comparison() [1/2]

template<class F >
CUDA NI bool lala::is_arithmetic_comparison ( const F & f)

True for the operators <=, <, >, >=, =, !=

◆ is_set_comparison()

template<class F >
CUDA NI bool lala::is_set_comparison ( const F & f)

True for the operators =, !=, subset, subseteq, supset, supseteq

◆ is_comparison()

template<class F >
CUDA NI bool lala::is_comparison ( const F & f)

True for the operators <=, <, >, >=, =, !=, subset, subseteq, supset, supseteq

◆ converse_comparison()

CUDA NI Sig lala::converse_comparison ( Sig sig)
inline

Returns the converse of a comparison operator (see is_comparison).

◆ map_avar_to_lvar()

template<class F , class Env >
CUDA NI void lala::map_avar_to_lvar ( F & f,
const Env & env,
bool erase_type = false )

Given a formula f, we transform all occurrences of AVar into logical variables.

◆ eval()

template<class F >
CUDA NI F lala::eval ( const F & f)

◆ normalize()

template<class F >
CUDA NI F lala::normalize ( const F & f)

We do simple transformation on the formula to obtain a sort of normal form such that:

  1. For all c <op> t, where c is a constant and t a term, we transform it into t <converse-op> c, whenever <op> has a converse.
  2. For all t <op> v, where v is a constant and t a term (not a variable or constant), we transform it into v <converse-op> t, whenever <op> has a converse.
  3. Try to push NOT inside the formula (see negate).
  4. Transform not x into x = 0.
  5. Transform x in {v} into x = v.

This avoids to repeat the same transformation in different abstract domains.

◆ decompose_in_constraint()

template<class F >
CUDA F lala::decompose_in_constraint ( const F & f,
const typename F::allocator_type & alloc = typename F::allocator_type() )

Given a constraint of the form t in S where S is a set of intervals {[l1,u1],..,[lN,uN]}, create a disjunction where each term represents interval.

◆ decompose_arith_neq_constraint()

template<class F >
CUDA F lala::decompose_arith_neq_constraint ( const F & f,
const typename F::allocator_type & alloc = typename F::allocator_type() )

◆ string_of_sig()

CUDA NI const char * lala::string_of_sig ( Sig sig)
inline

◆ is_prefix()

CUDA NI constexpr bool lala::is_prefix ( Sig sig)
inlineconstexpr

◆ is_division()

CUDA NI constexpr bool lala::is_division ( Sig sig)
inlineconstexpr

◆ is_modulo()

CUDA NI constexpr bool lala::is_modulo ( Sig sig)
inlineconstexpr

◆ is_associative()

CUDA NI constexpr bool lala::is_associative ( Sig sig)
inlineconstexpr

◆ is_arithmetic_comparison() [2/2]

CUDA NI constexpr bool lala::is_arithmetic_comparison ( Sig sig)
inlineconstexpr

◆ is_logical()

CUDA NI constexpr bool lala::is_logical ( Sig sig)
inlineconstexpr

◆ is_predicate()

CUDA NI constexpr bool lala::is_predicate ( Sig sig)
inlineconstexpr

◆ operator==() [3/8]

template<typename Allocator , typename ExtendedSig >
CUDA bool lala::operator== ( const TFormula< Allocator, ExtendedSig > & lhs,
const TFormula< Allocator, ExtendedSig > & rhs )

◆ var_in() [2/2]

template<class F , class Env >
CUDA NI std::optional< std::reference_wrapper< const typename Env::variable_type > > lala::var_in ( const F & f,
const Env & env )

Given a formula f and an environment, return the first variable occurring in f or {} if f has no variable in env.

◆ operator==() [4/8]

template<class Alloc1 , class Alloc2 >
CUDA NI bool lala::operator== ( const Sort< Alloc1 > & lhs,
const Sort< Alloc2 > & rhs )
inline

◆ ternarize()

template<class F , class Env = VarEnv<battery::standard_allocator>>
F lala::ternarize ( const F & f,
const Env & env = Env(),
bool ternarize_all = false )

Given a formula f, we transform it into a conjunction of formulas of this form:

  1. x <op> c where c is a constant.
  2. x = (y <op> z) where <op> is a binary operator, either arithmetic or a comparison (=, <=). This ternary form is used by the lala-pc/PIR solver.

◆ project_fun() [1/2]

template<class A , class R = A>
R lala::project_fun ( Sig fun,
const A & a,
const A & b )

◆ project_fun() [2/2]

template<class A , class R = A>
R lala::project_fun ( Sig fun,
const A & a )

◆ dual_bound()

template<class LDual , class L >
CUDA constexpr LDual lala::dual_bound ( const L & x)
constexpr

This function is useful when we need to convert a value to its dual. The dual is the upset of the current element, therefore, if we have \( x <= 10 \), the dual is given by the formula \( x >= 10 \) interpreted in the dual lattice. In that case, it just changes the type of the lattice without changing the value. A difference occurs on the bottom and top element. Indeed, by our representation of bot and top, the bottom value in a lattice L equals the top value in its dual, but we need them to remain the same, so the dual of L::bot() is LDual::bot().

◆ fjoin() [3/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr ArithBound< Pre, battery::local_memory > lala::fjoin ( const ArithBound< Pre, M1 > & a,
const ArithBound< Pre, M2 > & b )
constexpr

◆ fmeet() [3/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr ArithBound< Pre, battery::local_memory > lala::fmeet ( const ArithBound< Pre, M1 > & a,
const ArithBound< Pre, M2 > & b )
constexpr

◆ operator<() [3/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator< ( const ArithBound< Pre, M1 > & a,
const ArithBound< Pre, M2 > & b )
constexpr

◆ operator>() [3/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator> ( const ArithBound< Pre, M1 > & a,
const ArithBound< Pre, M2 > & b )
constexpr

◆ operator==() [5/8]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator== ( const ArithBound< Pre, M1 > & a,
const ArithBound< Pre, M2 > & b )
constexpr

◆ operator<<() [3/6]

template<class Pre , class M >
std::ostream & lala::operator<< ( std::ostream & s,
const ArithBound< Pre, M > & a )

◆ fjoin() [4/6]

template<class Pre >
CUDA constexpr FlatUniverse< Pre, battery::local_memory > lala::fjoin ( const FlatUniverse< Pre, battery::local_memory > & a,
const FlatUniverse< Pre, battery::local_memory > & b )
constexpr

◆ fmeet() [4/6]

template<class Pre >
CUDA constexpr FlatUniverse< Pre, battery::local_memory > lala::fmeet ( const FlatUniverse< Pre, battery::local_memory > & a,
const FlatUniverse< Pre, battery::local_memory > & b )
constexpr

◆ operator<() [4/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator< ( const FlatUniverse< Pre, M1 > & a,
const FlatUniverse< Pre, M2 > & b )
constexpr

◆ operator>() [4/6]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator> ( const FlatUniverse< Pre, M1 > & a,
const FlatUniverse< Pre, M2 > & b )
constexpr

◆ operator==() [6/8]

template<class Pre , class M1 , class M2 >
CUDA constexpr bool lala::operator== ( const FlatUniverse< Pre, M1 > & a,
const FlatUniverse< Pre, M2 > & b )
constexpr

◆ operator<<() [4/6]

template<class Pre , class M >
std::ostream & lala::operator<< ( std::ostream & s,
const FlatUniverse< Pre, M > & a )

◆ fjoin() [5/6]

template<size_t N, class M1 , class M2 , class T >
CUDA constexpr NBitset< N, battery::local_memory, T > lala::fjoin ( const NBitset< N, M1, T > & a,
const NBitset< N, M2, T > & b )
constexpr

◆ fmeet() [5/6]

template<size_t N, class M1 , class M2 , class T >
CUDA constexpr NBitset< N, battery::local_memory, T > lala::fmeet ( const NBitset< N, M1, T > & a,
const NBitset< N, M2, T > & b )
constexpr

◆ operator<() [5/6]

template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool lala::operator< ( const NBitset< N, M1, T > & a,
const NBitset< N, M2, T > & b )
constexpr

◆ operator>() [5/6]

template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool lala::operator> ( const NBitset< N, M1, T > & a,
const NBitset< N, M2, T > & b )
constexpr

◆ operator==() [7/8]

template<size_t N, class M1 , class M2 , class T >
CUDA constexpr bool lala::operator== ( const NBitset< N, M1, T > & a,
const NBitset< N, M2, T > & b )
constexpr

◆ operator<<() [5/6]

template<size_t N, class M , class T >
std::ostream & lala::operator<< ( std::ostream & s,
const NBitset< N, M, T > & a )

◆ fmeet() [6/6]

template<class L , class K , class Alloc >
CUDA auto lala::fmeet ( const VStore< L, Alloc > & a,
const VStore< K, Alloc > & b )

◆ fjoin() [6/6]

template<class L , class K , class Alloc >
CUDA auto lala::fjoin ( const VStore< L, Alloc > & a,
const VStore< K, Alloc > & b )

◆ operator<() [6/6]

template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool lala::operator< ( const VStore< L, Alloc1 > & a,
const VStore< K, Alloc2 > & b )

◆ operator>() [6/6]

template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool lala::operator> ( const VStore< L, Alloc1 > & a,
const VStore< K, Alloc2 > & b )

◆ operator==() [8/8]

template<class L , class K , class Alloc1 , class Alloc2 >
CUDA bool lala::operator== ( const VStore< L, Alloc1 > & a,
const VStore< K, Alloc2 > & b )

◆ operator<<() [6/6]

template<class L , class Alloc >
std::ostream & lala::operator<< ( std::ostream & s,
const VStore< L, Alloc > & vstore )