Lattice Land Core Library
|
#include <fixpoint.hpp>
Public Member Functions | |
CUDA void | barrier () |
template<class F > | |
CUDA local::B | iterate (int n, const F &f) const |
template<class F , class StopFun , class M > | |
CUDA int | fixpoint (int n, const F &f, const StopFun &must_stop, B< M > &has_changed) |
template<class F , class StopFun > | |
CUDA int | fixpoint (int n, const F &f, const StopFun &must_stop) |
template<class F , class M > | |
CUDA int | fixpoint (int n, const F &f, B< M > &has_changed) |
template<class F > | |
CUDA int | fixpoint (int n, const F &f) |
A simple form of sequential fixpoint computation based on Kleene fixpoint. At each iteration, the deduction operations \( f_1, \ldots, f_n \) are simply composed by functional composition \( f = f_n \circ \ldots \circ f_1 \). This strategy basically corresponds to the Gauss-Seidel iteration method.
|
inline |
|
inline |
We iterate the function f
n
times: \( f(0); f(1); \ldots ; f(n); \)
<tt>n</tt> | the number of call to f . |
<tt>bool | f(int i) returns true if something has changed for i . |
true
if for some i
, f(i)
returned true
, false
otherwise.
|
inline |
We execute iterate(n, f)
until we reach a fixpoint or must_stop()
returns true
.
<tt>n</tt> | the number of call to f . |
<tt>bool | f(int i) returns true if something has changed for i . |
<tt>bool | must_stop() returns true if we must stop early the fixpoint computation. |
<tt>has_changed</tt> | is set to true if we were not yet in a fixpoint. |
must_stop()
returns true
.
|
inline |
Same as fixpoint
above without has_changed
.
|
inline |
Same as fixpoint
above with must_stop
always returning false
.
|
inline |
Same as fixpoint
above without has_changed
and with must_stop
always returning false
.