Lattice Land Core Library
Loading...
Searching...
No Matches
lala::VStore< U, Allocator > Class Template Reference

#include <vstore.hpp>

Classes

struct  var_dom
 

Public Types

using universe_type = U
 
using local_universe = typename universe_type::local_type
 
using allocator_type = Allocator
 
using this_type = VStore<universe_type, allocator_type>
 
template<class Alloc >
using tell_type = battery::vector<var_dom<Alloc>, Alloc>
 
template<class Alloc >
using ask_type = tell_type<Alloc>
 
template<class Alloc = allocator_type>
using snapshot_type = battery::vector<local_universe, Alloc>
 

Public Member Functions

CUDA VStore (const this_type &other)
 
CUDA VStore (AType atype, const allocator_type &alloc=allocator_type())
 
CUDA VStore (AType atype, size_t size, const allocator_type &alloc=allocator_type())
 
template<class R >
CUDA VStore (const VStore< R, allocator_type > &other)
 
template<class R , class Alloc2 >
CUDA VStore (const VStore< R, Alloc2 > &other, const allocator_type &alloc=allocator_type())
 
template<class R , class Alloc2 , class... Allocators>
CUDA VStore (const VStore< R, Alloc2 > &other, const AbstractDeps< Allocators... > &deps)
 
CUDA VStore (this_type &&other)
 
CUDA allocator_type get_allocator () const
 
CUDA AType aty () const
 
CUDA size_t vars () const
 
CUDA local::B is_bot () const
 
CUDA local::B is_top () const
 
template<class Alloc = allocator_type>
CUDA snapshot_type< Alloc > snapshot (const Alloc &alloc=Alloc()) const
 
template<class Alloc >
CUDA this_typerestore (const snapshot_type< Alloc > &snap)
 
template<IKind kind, bool diagnose = false, class F , class Env , class I >
CUDA NI bool interpret (const F &f, Env &env, I &intermediate, IDiagnostics &diagnostics) const
 
template<bool diagnose = false, class F , class Env , class Alloc2 >
CUDA NI bool interpret_tell (const F &f, Env &env, tell_type< Alloc2 > &tell, IDiagnostics &diagnostics) const
 
template<bool diagnose = false, class F , class Env , class Alloc2 >
CUDA NI bool interpret_ask (const F &f, const Env &env, ask_type< Alloc2 > &ask, IDiagnostics &diagnostics) const
 
template<class Group , class Store >
CUDA void copy_to (Group &group, Store &store) const
 
CUDA void reset_data (allocator_type alloc)
 
template<class Univ >
CUDA void project (AVar x, Univ &u) const
 
CUDA const universe_typeproject (AVar x) const
 
CUDA const universe_typeoperator[] (int x) const
 
CUDA const universe_typeoperator[] (AVar x) const
 
CUDA void meet_bot ()
 
CUDA bool embed (int x, const universe_type &dom)
 
CUDA bool embed (AVar x, const universe_type &dom)
 
template<class Alloc2 >
CUDA bool deduce (const tell_type< Alloc2 > &t)
 
template<class U2 , class Alloc2 >
CUDA bool meet (const VStore< U2, Alloc2 > &other)
 
CUDA void join_top ()
 
template<class U2 , class Alloc2 >
CUDA bool join (const VStore< U2, Alloc2 > &other)
 
template<class Alloc2 >
CUDA local::B ask (const ask_type< Alloc2 > &t) const
 
CUDA size_t num_deductions () const
 
CUDA local::B deduce (size_t) const
 
template<class ExtractionStrategy = NonAtomicExtraction>
CUDA bool is_extractable (const ExtractionStrategy &strategy=ExtractionStrategy()) const
 
template<class U2 , class Alloc2 >
CUDA void extract (VStore< U2, Alloc2 > &ua) const
 
template<class Env , class Allocator2 = typename Env::allocator_type>
CUDA NI TFormula< Allocator2 > deinterpret (const Env &env, const Allocator2 &allocator=Allocator2()) const
 
template<class I , class Env , class Allocator2 = typename Env::allocator_type>
CUDA NI TFormula< Allocator2 > deinterpret (const I &intermediate, const Env &env, const Allocator2 &allocator=Allocator2()) const
 
CUDA void print () const
 

Static Public Member Functions

static CUDA this_type top (AType atype=UNTYPED, const allocator_type &alloc=allocator_type{})
 
static CUDA this_type bot (AType atype=UNTYPED, const allocator_type &alloc=allocator_type{})
 
template<class Env >
static CUDA this_type bot (Env &env, const allocator_type &alloc=allocator_type{})
 
template<class Env >
static CUDA this_type top (Env &env, const allocator_type &alloc=allocator_type{})
 

Static Public Attributes

static constexpr const bool is_abstract_universe = false
 
static constexpr const bool sequential = universe_type::sequential
 
static constexpr const bool is_totally_ordered = false
 
static constexpr const bool preserve_bot = true
 
static constexpr const bool preserve_top = true
 
static constexpr const bool preserve_join = universe_type::preserve_join
 
static constexpr const bool preserve_meet = universe_type::preserve_meet
 
static constexpr const bool injective_concretization = universe_type::injective_concretization
 
static constexpr const bool preserve_concrete_covers = universe_type::preserve_concrete_covers
 
static constexpr const char * name = "VStore"
 

Friends

template<class U2 , class Alloc2 >
class VStore
 

Detailed Description

template<class U, class Allocator>
class lala::VStore< U, Allocator >

The variable store abstract domain is a domain transformer built on top of an abstract universe U. Concretization function: \( \gamma(\rho) := \bigcap_{x \in \pi(\rho)} \gamma_{U_x}(\rho(x)) \). The bot element is smashed and the equality between two stores is represented by the following equivalence relation, for two stores \( S \) and \( T \): \( S \equiv T \Leftrightarrow \forall{x \in \mathit{Vars}},~S(x) = T(x) \lor \exists{x \in \mathit{dom}(S)},\exists{y \in \mathit{dom}(T)},~S(x) = \bot \land T(y) = \bot \). Intuitively, it means that either all elements are equal or both stores have a bot element, in which case they "collapse" to the bot element, and are considered equal.

The top element is the element \( \langle \top, \ldots \rangle \), that is an infinite number of variables initialized to top. In practice, we cannot represent infinite collections, so we represent top either as the empty collection or with a finite number of top elements. Any finite store \( \langle x_1, \ldots, x_n \rangle \) should be seen as the concrete store \( \langle x_1, \ldots, x_n, \top, \ldots \rangle \).

This semantics has implication when joining or merging two elements. For instance, \( \langle 1 \rangle.\mathit{meet}(\langle \bot, 4 \rangle) \) will be equal to bottom, in that case represented by \( \langle \bot \rangle \).

Template parameters:

  • U is the type of the abstract universe.
  • Allocator is the allocator of the underlying array of universes.

Member Typedef Documentation

◆ universe_type

template<class U , class Allocator >
using lala::VStore< U, Allocator >::universe_type = U

◆ local_universe

template<class U , class Allocator >
using lala::VStore< U, Allocator >::local_universe = typename universe_type::local_type

◆ allocator_type

template<class U , class Allocator >
using lala::VStore< U, Allocator >::allocator_type = Allocator

◆ this_type

template<class U , class Allocator >
using lala::VStore< U, Allocator >::this_type = VStore<universe_type, allocator_type>

◆ tell_type

template<class U , class Allocator >
template<class Alloc >
using lala::VStore< U, Allocator >::tell_type = battery::vector<var_dom<Alloc>, Alloc>

◆ ask_type

template<class U , class Allocator >
template<class Alloc >
using lala::VStore< U, Allocator >::ask_type = tell_type<Alloc>

◆ snapshot_type

template<class U , class Allocator >
template<class Alloc = allocator_type>
using lala::VStore< U, Allocator >::snapshot_type = battery::vector<local_universe, Alloc>

Constructor & Destructor Documentation

◆ VStore() [1/7]

template<class U , class Allocator >
CUDA lala::VStore< U, Allocator >::VStore ( const this_type & other)
inline

◆ VStore() [2/7]

template<class U , class Allocator >
CUDA lala::VStore< U, Allocator >::VStore ( AType atype,
const allocator_type & alloc = allocator_type() )
inline

Initialize an empty store.

◆ VStore() [3/7]

template<class U , class Allocator >
CUDA lala::VStore< U, Allocator >::VStore ( AType atype,
size_t size,
const allocator_type & alloc = allocator_type() )
inline

◆ VStore() [4/7]

template<class U , class Allocator >
template<class R >
CUDA lala::VStore< U, Allocator >::VStore ( const VStore< R, allocator_type > & other)
inline

◆ VStore() [5/7]

template<class U , class Allocator >
template<class R , class Alloc2 >
CUDA lala::VStore< U, Allocator >::VStore ( const VStore< R, Alloc2 > & other,
const allocator_type & alloc = allocator_type() )
inline

◆ VStore() [6/7]

template<class U , class Allocator >
template<class R , class Alloc2 , class... Allocators>
CUDA lala::VStore< U, Allocator >::VStore ( const VStore< R, Alloc2 > & other,
const AbstractDeps< Allocators... > & deps )
inline

Copy the vstore other in the current element. deps can be empty and is not used besides to get the allocator (since this abstract domain does not have dependencies).

◆ VStore() [7/7]

template<class U , class Allocator >
CUDA lala::VStore< U, Allocator >::VStore ( this_type && other)
inline

Member Function Documentation

◆ get_allocator()

template<class U , class Allocator >
CUDA allocator_type lala::VStore< U, Allocator >::get_allocator ( ) const
inline

◆ aty()

template<class U , class Allocator >
CUDA AType lala::VStore< U, Allocator >::aty ( ) const
inline

◆ vars()

template<class U , class Allocator >
CUDA size_t lala::VStore< U, Allocator >::vars ( ) const
inline

Returns the number of variables currently represented by this abstract element.

◆ top() [1/2]

template<class U , class Allocator >
static CUDA this_type lala::VStore< U, Allocator >::top ( AType atype = UNTYPED,
const allocator_type & alloc = allocator_type{} )
inlinestatic

◆ bot() [1/2]

template<class U , class Allocator >
static CUDA this_type lala::VStore< U, Allocator >::bot ( AType atype = UNTYPED,
const allocator_type & alloc = allocator_type{} )
inlinestatic

A special symbolic element representing top.

◆ bot() [2/2]

template<class U , class Allocator >
template<class Env >
static CUDA this_type lala::VStore< U, Allocator >::bot ( Env & env,
const allocator_type & alloc = allocator_type{} )
inlinestatic

◆ top() [2/2]

template<class U , class Allocator >
template<class Env >
static CUDA this_type lala::VStore< U, Allocator >::top ( Env & env,
const allocator_type & alloc = allocator_type{} )
inlinestatic

◆ is_bot()

template<class U , class Allocator >
CUDA local::B lala::VStore< U, Allocator >::is_bot ( ) const
inline
Returns
true if at least one element is equal to bot in the store, false otherwise. @parallel @order-preserving @increasing

◆ is_top()

template<class U , class Allocator >
CUDA local::B lala::VStore< U, Allocator >::is_top ( ) const
inline

The bottom element of a store of n variables is when all variables are at bottom, or the store is empty. We do not expect to use this operation a lot, so its complexity is linear in the number of variables. @parallel @order-preserving @decreasing

◆ snapshot()

template<class U , class Allocator >
template<class Alloc = allocator_type>
CUDA snapshot_type< Alloc > lala::VStore< U, Allocator >::snapshot ( const Alloc & alloc = Alloc()) const
inline

Take a snapshot of the current variable store.

◆ restore()

template<class U , class Allocator >
template<class Alloc >
CUDA this_type & lala::VStore< U, Allocator >::restore ( const snapshot_type< Alloc > & snap)
inline

◆ interpret()

template<class U , class Allocator >
template<IKind kind, bool diagnose = false, class F , class Env , class I >
CUDA NI bool lala::VStore< U, Allocator >::interpret ( const F & f,
Env & env,
I & intermediate,
IDiagnostics & diagnostics ) const
inline

◆ interpret_tell()

template<class U , class Allocator >
template<bool diagnose = false, class F , class Env , class Alloc2 >
CUDA NI bool lala::VStore< U, Allocator >::interpret_tell ( const F & f,
Env & env,
tell_type< Alloc2 > & tell,
IDiagnostics & diagnostics ) const
inline

The store of variables lattice expects a formula with a single variable (including existential quantifiers) that can be handled by the abstract universe U.

Variables must be existentially quantified before a formula containing variables can be interpreted. Variables are immediately assigned to an index of VStore and initialized to \( \top_U \). Shadowing/redeclaration of variables with existential quantifier is not supported. The variable mapping is added to the environment only if the interpretation succeeds.

There is a small quirk: different stores might be produced if quantifiers do not appear in the same order. This is because we attribute the first available index to variables when interpreting the quantifier. In that case, the store will only be equivalent modulo the env structure.

◆ interpret_ask()

template<class U , class Allocator >
template<bool diagnose = false, class F , class Env , class Alloc2 >
CUDA NI bool lala::VStore< U, Allocator >::interpret_ask ( const F & f,
const Env & env,
ask_type< Alloc2 > & ask,
IDiagnostics & diagnostics ) const
inline

Similar to interpret_tell but do not support existential quantifier and therefore leaves env unchanged.

◆ copy_to()

template<class U , class Allocator >
template<class Group , class Store >
CUDA void lala::VStore< U, Allocator >::copy_to ( Group & group,
Store & store ) const
inline

◆ reset_data()

template<class U , class Allocator >
CUDA void lala::VStore< U, Allocator >::reset_data ( allocator_type alloc)
inline

Change the allocator of the underlying data, and reallocate the memory without copying the old data.

◆ project() [1/2]

template<class U , class Allocator >
template<class Univ >
CUDA void lala::VStore< U, Allocator >::project ( AVar x,
Univ & u ) const
inline

◆ project() [2/2]

template<class U , class Allocator >
CUDA const universe_type & lala::VStore< U, Allocator >::project ( AVar x) const
inline

◆ operator[]() [1/2]

template<class U , class Allocator >
CUDA const universe_type & lala::VStore< U, Allocator >::operator[] ( int x) const
inline

This projection must stay const, otherwise the user might tell new information in the universe, but we need to know in case we reach top.

◆ operator[]() [2/2]

template<class U , class Allocator >
CUDA const universe_type & lala::VStore< U, Allocator >::operator[] ( AVar x) const
inline

◆ meet_bot()

template<class U , class Allocator >
CUDA void lala::VStore< U, Allocator >::meet_bot ( )
inline

◆ embed() [1/2]

template<class U , class Allocator >
CUDA bool lala::VStore< U, Allocator >::embed ( int x,
const universe_type & dom )
inline

Given an abstract variable v, embed(VID(v), dom) will update the domain of this variable with the new information dom. This embed method follows PCCP's model, but the variable x must already be initialized in the store. @parallel @order-preserving @increasing

◆ embed() [2/2]

template<class U , class Allocator >
CUDA bool lala::VStore< U, Allocator >::embed ( AVar x,
const universe_type & dom )
inline

This embed method follows PCCP's model, but the variable x must already be initialized in the store.

◆ deduce() [1/2]

template<class U , class Allocator >
template<class Alloc2 >
CUDA bool lala::VStore< U, Allocator >::deduce ( const tell_type< Alloc2 > & t)
inline

This deduce method can grow the store if required, and therefore do not satisfy the PCCP model. @sequential @order-preserving @increasing

◆ meet()

template<class U , class Allocator >
template<class U2 , class Alloc2 >
CUDA bool lala::VStore< U, Allocator >::meet ( const VStore< U2, Alloc2 > & other)
inline

Precondition: other must be smaller or equal in size than the current store.

◆ join_top()

template<class U , class Allocator >
CUDA void lala::VStore< U, Allocator >::join_top ( )
inline

◆ join()

template<class U , class Allocator >
template<class U2 , class Alloc2 >
CUDA bool lala::VStore< U, Allocator >::join ( const VStore< U2, Alloc2 > & other)
inline

Precondition: other must be smaller or equal in size than the current store.

◆ ask()

template<class U , class Allocator >
template<class Alloc2 >
CUDA local::B lala::VStore< U, Allocator >::ask ( const ask_type< Alloc2 > & t) const
inline
Returns
true when we can deduce the content of t from the current domain. For instance, if we have in the store x = [0..10], we can deduce x = [-1..11] but we cannot deduce x = [5..8]. @parallel @order-preserving @decreasing

◆ num_deductions()

template<class U , class Allocator >
CUDA size_t lala::VStore< U, Allocator >::num_deductions ( ) const
inline

◆ deduce() [2/2]

template<class U , class Allocator >
CUDA local::B lala::VStore< U, Allocator >::deduce ( size_t ) const
inline

◆ is_extractable()

template<class U , class Allocator >
template<class ExtractionStrategy = NonAtomicExtraction>
CUDA bool lala::VStore< U, Allocator >::is_extractable ( const ExtractionStrategy & strategy = ExtractionStrategy()) const
inline

An abstract element is extractable when it is not equal to bot. If the strategy is atoms, we check the domains are singleton.

◆ extract()

template<class U , class Allocator >
template<class U2 , class Alloc2 >
CUDA void lala::VStore< U, Allocator >::extract ( VStore< U2, Alloc2 > & ua) const
inline

Whenever this is different from bot, we extract its data into ua.

Precondition
is_extractable() must be true. For now, we suppose VStore is only used to store under-approximation, I'm not sure yet how we would interact with over-approximation.

◆ deinterpret() [1/2]

template<class U , class Allocator >
template<class Env , class Allocator2 = typename Env::allocator_type>
CUDA NI TFormula< Allocator2 > lala::VStore< U, Allocator >::deinterpret ( const Env & env,
const Allocator2 & allocator = Allocator2() ) const
inline

◆ deinterpret() [2/2]

template<class U , class Allocator >
template<class I , class Env , class Allocator2 = typename Env::allocator_type>
CUDA NI TFormula< Allocator2 > lala::VStore< U, Allocator >::deinterpret ( const I & intermediate,
const Env & env,
const Allocator2 & allocator = Allocator2() ) const
inline

◆ print()

template<class U , class Allocator >
CUDA void lala::VStore< U, Allocator >::print ( ) const
inline

Friends And Related Symbol Documentation

◆ VStore

template<class U , class Allocator >
template<class U2 , class Alloc2 >
friend class VStore
friend

Member Data Documentation

◆ is_abstract_universe

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::is_abstract_universe = false
staticconstexpr

◆ sequential

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::sequential = universe_type::sequential
staticconstexpr

◆ is_totally_ordered

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::is_totally_ordered = false
staticconstexpr

◆ preserve_bot

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::preserve_bot = true
staticconstexpr

◆ preserve_top

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::preserve_top = true
staticconstexpr

◆ preserve_join

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::preserve_join = universe_type::preserve_join
staticconstexpr

◆ preserve_meet

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::preserve_meet = universe_type::preserve_meet
staticconstexpr

◆ injective_concretization

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::injective_concretization = universe_type::injective_concretization
staticconstexpr

◆ preserve_concrete_covers

template<class U , class Allocator >
const bool lala::VStore< U, Allocator >::preserve_concrete_covers = universe_type::preserve_concrete_covers
staticconstexpr

◆ name

template<class U , class Allocator >
const char* lala::VStore< U, Allocator >::name = "VStore"
staticconstexpr

The documentation for this class was generated from the following file: