Lattice Land Core Library
|
#include <vstore.hpp>
Classes | |
struct | var_dom |
Public Types | |
using | universe_type = U |
using | local_universe = typename universe_type::local_type |
using | allocator_type = Allocator |
using | this_type = VStore<universe_type, allocator_type> |
template<class Alloc > | |
using | tell_type = battery::vector<var_dom<Alloc>, Alloc> |
template<class Alloc > | |
using | ask_type = tell_type<Alloc> |
template<class Alloc = allocator_type> | |
using | snapshot_type = battery::vector<local_universe, Alloc> |
Public Member Functions | |
CUDA | VStore (const this_type &other) |
CUDA | VStore (AType atype, const allocator_type &alloc=allocator_type()) |
CUDA | VStore (AType atype, size_t size, const allocator_type &alloc=allocator_type()) |
template<class R > | |
CUDA | VStore (const VStore< R, allocator_type > &other) |
template<class R , class Alloc2 > | |
CUDA | VStore (const VStore< R, Alloc2 > &other, const allocator_type &alloc=allocator_type()) |
template<class R , class Alloc2 , class... Allocators> | |
CUDA | VStore (const VStore< R, Alloc2 > &other, const AbstractDeps< Allocators... > &deps) |
CUDA | VStore (this_type &&other) |
CUDA allocator_type | get_allocator () const |
CUDA AType | aty () const |
CUDA size_t | vars () const |
CUDA local::B | is_bot () const |
CUDA local::B | is_top () const |
template<class Alloc = allocator_type> | |
CUDA snapshot_type< Alloc > | snapshot (const Alloc &alloc=Alloc()) const |
template<class Alloc > | |
CUDA this_type & | restore (const snapshot_type< Alloc > &snap) |
template<IKind kind, bool diagnose = false, class F , class Env , class I > | |
CUDA NI bool | interpret (const F &f, Env &env, I &intermediate, IDiagnostics &diagnostics) const |
template<bool diagnose = false, class F , class Env , class Alloc2 > | |
CUDA NI bool | interpret_tell (const F &f, Env &env, tell_type< Alloc2 > &tell, IDiagnostics &diagnostics) const |
template<bool diagnose = false, class F , class Env , class Alloc2 > | |
CUDA NI bool | interpret_ask (const F &f, const Env &env, ask_type< Alloc2 > &ask, IDiagnostics &diagnostics) const |
template<class Group , class Store > | |
CUDA void | copy_to (Group &group, Store &store) const |
CUDA void | reset_data (allocator_type alloc) |
template<class Univ > | |
CUDA void | project (AVar x, Univ &u) const |
CUDA const universe_type & | project (AVar x) const |
CUDA const universe_type & | operator[] (int x) const |
CUDA const universe_type & | operator[] (AVar x) const |
CUDA void | meet_bot () |
CUDA bool | embed (int x, const universe_type &dom) |
CUDA bool | embed (AVar x, const universe_type &dom) |
template<class Alloc2 > | |
CUDA bool | deduce (const tell_type< Alloc2 > &t) |
template<class U2 , class Alloc2 > | |
CUDA bool | meet (const VStore< U2, Alloc2 > &other) |
CUDA void | join_top () |
template<class U2 , class Alloc2 > | |
CUDA bool | join (const VStore< U2, Alloc2 > &other) |
template<class Alloc2 > | |
CUDA local::B | ask (const ask_type< Alloc2 > &t) const |
CUDA size_t | num_deductions () const |
CUDA local::B | deduce (size_t) const |
template<class ExtractionStrategy = NonAtomicExtraction> | |
CUDA bool | is_extractable (const ExtractionStrategy &strategy=ExtractionStrategy()) const |
template<class U2 , class Alloc2 > | |
CUDA void | extract (VStore< U2, Alloc2 > &ua) const |
template<class Env , class Allocator2 = typename Env::allocator_type> | |
CUDA NI TFormula< Allocator2 > | deinterpret (const Env &env, const Allocator2 &allocator=Allocator2()) const |
template<class I , class Env , class Allocator2 = typename Env::allocator_type> | |
CUDA NI TFormula< Allocator2 > | deinterpret (const I &intermediate, const Env &env, const Allocator2 &allocator=Allocator2()) const |
CUDA void | print () const |
Static Public Member Functions | |
static CUDA this_type | top (AType atype=UNTYPED, const allocator_type &alloc=allocator_type{}) |
static CUDA this_type | bot (AType atype=UNTYPED, const allocator_type &alloc=allocator_type{}) |
template<class Env > | |
static CUDA this_type | bot (Env &env, const allocator_type &alloc=allocator_type{}) |
template<class Env > | |
static CUDA this_type | top (Env &env, const allocator_type &alloc=allocator_type{}) |
Static Public Attributes | |
static constexpr const bool | is_abstract_universe = false |
static constexpr const bool | sequential = universe_type::sequential |
static constexpr const bool | is_totally_ordered = false |
static constexpr const bool | preserve_bot = true |
static constexpr const bool | preserve_top = true |
static constexpr const bool | preserve_join = universe_type::preserve_join |
static constexpr const bool | preserve_meet = universe_type::preserve_meet |
static constexpr const bool | injective_concretization = universe_type::injective_concretization |
static constexpr const bool | preserve_concrete_covers = universe_type::preserve_concrete_covers |
static constexpr const char * | name = "VStore" |
Friends | |
template<class U2 , class Alloc2 > | |
class | VStore |
The variable store abstract domain is a domain transformer built on top of an abstract universe U
. Concretization function: \( \gamma(\rho) := \bigcap_{x \in \pi(\rho)} \gamma_{U_x}(\rho(x)) \). The bot element is smashed and the equality between two stores is represented by the following equivalence relation, for two stores \( S \) and \( T \): \( S \equiv T \Leftrightarrow \forall{x \in \mathit{Vars}},~S(x) = T(x) \lor \exists{x \in \mathit{dom}(S)},\exists{y \in \mathit{dom}(T)},~S(x) = \bot \land T(y) = \bot \). Intuitively, it means that either all elements are equal or both stores have a bot element, in which case they "collapse" to the bot element, and are considered equal.
The top element is the element \( \langle \top, \ldots \rangle \), that is an infinite number of variables initialized to top. In practice, we cannot represent infinite collections, so we represent top either as the empty collection or with a finite number of top elements. Any finite store \( \langle x_1, \ldots, x_n \rangle \) should be seen as the concrete store \( \langle x_1, \ldots, x_n, \top, \ldots \rangle \).
This semantics has implication when joining or merging two elements. For instance, \( \langle 1 \rangle.\mathit{meet}(\langle \bot, 4 \rangle) \) will be equal to bottom, in that case represented by \( \langle \bot \rangle \).
Template parameters:
U
is the type of the abstract universe.Allocator
is the allocator of the underlying array of universes. using lala::VStore< U, Allocator >::universe_type = U |
using lala::VStore< U, Allocator >::local_universe = typename universe_type::local_type |
using lala::VStore< U, Allocator >::allocator_type = Allocator |
using lala::VStore< U, Allocator >::this_type = VStore<universe_type, allocator_type> |
using lala::VStore< U, Allocator >::tell_type = battery::vector<var_dom<Alloc>, Alloc> |
using lala::VStore< U, Allocator >::ask_type = tell_type<Alloc> |
using lala::VStore< U, Allocator >::snapshot_type = battery::vector<local_universe, Alloc> |
|
inline |
|
inline |
Initialize an empty store.
|
inline |
|
inline |
|
inline |
|
inline |
Copy the vstore other
in the current element. deps
can be empty and is not used besides to get the allocator (since this abstract domain does not have dependencies).
|
inline |
|
inline |
|
inline |
|
inline |
Returns the number of variables currently represented by this abstract element.
|
inlinestatic |
|
inlinestatic |
A special symbolic element representing top.
|
inlinestatic |
|
inlinestatic |
|
inline |
true
if at least one element is equal to bot in the store, false
otherwise. @parallel @order-preserving @increasing
|
inline |
The bottom element of a store of n
variables is when all variables are at bottom, or the store is empty. We do not expect to use this operation a lot, so its complexity is linear in the number of variables. @parallel @order-preserving @decreasing
|
inline |
Take a snapshot of the current variable store.
|
inline |
|
inline |
|
inline |
The store of variables lattice expects a formula with a single variable (including existential quantifiers) that can be handled by the abstract universe U
.
Variables must be existentially quantified before a formula containing variables can be interpreted. Variables are immediately assigned to an index of VStore
and initialized to \( \top_U \). Shadowing/redeclaration of variables with existential quantifier is not supported. The variable mapping is added to the environment only if the interpretation succeeds.
There is a small quirk: different stores might be produced if quantifiers do not appear in the same order. This is because we attribute the first available index to variables when interpreting the quantifier. In that case, the store will only be equivalent modulo the env
structure.
|
inline |
Similar to interpret_tell
but do not support existential quantifier and therefore leaves env
unchanged.
|
inline |
|
inline |
Change the allocator of the underlying data, and reallocate the memory without copying the old data.
|
inline |
|
inline |
|
inline |
This projection must stay const, otherwise the user might tell new information in the universe, but we need to know in case we reach top
.
|
inline |
|
inline |
|
inline |
Given an abstract variable v
, embed(VID(v), dom)
will update the domain of this variable with the new information dom
. This embed
method follows PCCP's model, but the variable x
must already be initialized in the store. @parallel @order-preserving @increasing
|
inline |
This embed
method follows PCCP's model, but the variable x
must already be initialized in the store.
|
inline |
This deduce method can grow the store if required, and therefore do not satisfy the PCCP model. @sequential @order-preserving @increasing
|
inline |
Precondition: other
must be smaller or equal in size than the current store.
|
inline |
|
inline |
Precondition: other
must be smaller or equal in size than the current store.
|
inline |
true
when we can deduce the content of t
from the current domain. For instance, if we have in the store x = [0..10]
, we can deduce x = [-1..11]
but we cannot deduce x = [5..8]
. @parallel @order-preserving @decreasing
|
inline |
|
inline |
|
inline |
An abstract element is extractable when it is not equal to bot. If the strategy is atoms
, we check the domains are singleton.
|
inline |
Whenever this
is different from bot
, we extract its data into ua
.
is_extractable()
must be true
. For now, we suppose VStore is only used to store under-approximation, I'm not sure yet how we would interact with over-approximation.
|
inline |
|
inline |
|
inline |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |