|
Lattice land propagators completion library
|
#include <formula.hpp>
Public Types | |
| using | A = AD |
| using | U = typename A::local_universe |
| using | allocator_type = Allocator |
| using | this_type = Inequality< A, allocator_type, neg > |
| using | sub_type = Term< A, allocator_type > |
Public Member Functions | |
| CUDA | Inequality (sub_type &&left, sub_type &&right) |
| CUDA | Inequality (this_type &&other) |
| template<class A2 , class Alloc2 > | |
| CUDA | Inequality (const Inequality< A2, Alloc2, neg > &other, const allocator_type &alloc) |
| CUDA local::B | ask (const A &a) const |
| CUDA local::B | nask (const A &a) const |
| CUDA bool | deduce (A &a) const |
| CUDA bool | contradeduce (A &a) const |
| CUDA NI void | print (const A &a) const |
| template<class Env , class Allocator2 = typename Env::allocator_type> | |
| CUDA NI TFormula< Allocator2 > | deinterpret (const A &a, const Env &env, AType apc, Allocator2 allocator=Allocator2()) const |
| CUDA size_t | length () const |
Friends | |
| template<class A2 , class Alloc2 , bool neg2> | |
| class | Inequality |
Implement the constraint t1 <= t2 or t1 > t2 if neg is true.
| using lala::pc::Inequality< AD, Allocator, neg >::A = AD |
| using lala::pc::Inequality< AD, Allocator, neg >::U = typename A::local_universe |
| using lala::pc::Inequality< AD, Allocator, neg >::allocator_type = Allocator |
| using lala::pc::Inequality< AD, Allocator, neg >::this_type = Inequality<A, allocator_type, neg> |
| using lala::pc::Inequality< AD, Allocator, neg >::sub_type = Term<A, allocator_type> |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
friend |