Lattice land propagators completion library
|
#include <formula.hpp>
Public Types | |
using | A = AD |
using | U = typename A::local_universe |
using | allocator_type = Allocator |
using | this_type = Inequality<A, allocator_type, neg> |
using | sub_type = Term<A, allocator_type> |
Public Member Functions | |
CUDA | Inequality (sub_type &&left, sub_type &&right) |
CUDA | Inequality (this_type &&other) |
template<class A2 , class Alloc2 > | |
CUDA | Inequality (const Inequality< A2, Alloc2, neg > &other, const allocator_type &alloc) |
CUDA local::B | ask (const A &a) const |
CUDA local::B | nask (const A &a) const |
CUDA bool | deduce (A &a) const |
CUDA bool | contradeduce (A &a) const |
CUDA NI void | print (const A &a) const |
template<class Env , class Allocator2 = typename Env::allocator_type> | |
CUDA NI TFormula< Allocator2 > | deinterpret (const A &a, const Env &env, AType apc, Allocator2 allocator=Allocator2()) const |
CUDA size_t | length () const |
Friends | |
template<class A2 , class Alloc2 , bool neg2> | |
class | Inequality |
Implement the constraint t1 <= t2
or t1 > t2
if neg
is true
.
using lala::pc::Inequality< AD, Allocator, neg >::A = AD |
using lala::pc::Inequality< AD, Allocator, neg >::U = typename A::local_universe |
using lala::pc::Inequality< AD, Allocator, neg >::allocator_type = Allocator |
using lala::pc::Inequality< AD, Allocator, neg >::this_type = Inequality<A, allocator_type, neg> |
using lala::pc::Inequality< AD, Allocator, neg >::sub_type = Term<A, allocator_type> |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
friend |