Lattice Land Core Library
flat_universe.hpp
Go to the documentation of this file.
1 // Copyright 2023 Pierre Talbot
2 
3 #ifndef LALA_CORE_FLAT_UNIVERSE_HPP
4 #define LALA_CORE_FLAT_UNIVERSE_HPP
5 
6 #include "arith_bound.hpp"
7 
8 namespace lala {
9 
10 template<class PreUniverse, class Mem>
11 class FlatUniverse;
12 
13 /** Lattice of flat integers. */
14 template<class VT, class Mem>
16 
17 /** Lattice of flat floating-point numbers. */
18 template<class VT, class Mem>
20 
21 /** Aliases for lattice allocated on the stack (as local variable) and accessed by only one thread.
22  * To make things simpler, the underlying type is also chosen (when required). */
23 namespace local {
26 }
27 
28 template<class PreUniverse, class Mem>
30 {
31  using U = PreUniverse;
32 public:
33  using pre_universe = PreUniverse;
34  using value_type = typename pre_universe::value_type;
35  using memory_type = Mem;
37  template <class M> using this_type2 = FlatUniverse<pre_universe, M>;
39 
40  static_assert(pre_universe::is_upper_bound);
41  static_assert(pre_universe::preserve_bot && pre_universe::preserve_top,
42  "The Flat lattice construction reuse the bottom and top elements of the pre-universe.\
43  Therefore, it must preserve bottom and top.");
44 
45  constexpr static const bool is_abstract_universe = true;
46  constexpr static const bool sequential = Mem::sequential;
47  constexpr static const bool is_totally_ordered = false;
48  constexpr static const bool preserve_bot = true;
49  constexpr static const bool preserve_top = true;
50  constexpr static const bool preserve_join = true;
51  constexpr static const bool preserve_meet = false;
52  constexpr static const bool injective_concretization = pre_universe::injective_concretization;
53  constexpr static const bool preserve_concrete_covers = true;
54  constexpr static const char* name = "Flat";
55  constexpr static const bool is_arithmetic = pre_universe::is_arithmetic;
56 
57  /** A pre-interpreted formula `x = value` ready to use.
58  * This is mainly for optimization purpose to avoid calling `interpret` each time we need it. */
59  CUDA static constexpr local_type eq_k(value_type k) {
60  return local_type(k);
61  }
62 
63 private:
64  using atomic_type = memory_type::template atomic_type<value_type>;
65  atomic_type val;
66 
67 public:
68  /** Similar to \f$[\![\mathit{false}]\!]\f$. */
69  CUDA static constexpr local_type bot() {
70  return local_type(U::bot());
71  }
72 
73  /** Similar to \f$[\![\mathit{true}]\!]\f$. */
74  CUDA static constexpr local_type top() {
75  return local_type();
76  }
77  /** Initialize to the top of the flat lattice. */
78  CUDA constexpr FlatUniverse(): val(U::top()) {}
79  /** Similar to \f$[\![x = k]\!]\f$ for any name `x` where \f$ = \f$ is the equality. */
80  CUDA constexpr FlatUniverse(value_type k): val(k) {}
81  CUDA constexpr FlatUniverse(const this_type& other): FlatUniverse(other.value()) {}
82  CUDA constexpr FlatUniverse(this_type&& other): val(std::move(other.val)) {}
83 
84  template <class M>
85  CUDA constexpr FlatUniverse(const this_type2<M>& other): FlatUniverse(other.value()) {}
86 
87  template <class M>
88  CUDA constexpr FlatUniverse(const ArithBound<pre_universe, M>& other)
89  : FlatUniverse(other.value()) {}
90 
91  template <class M>
93  : FlatUniverse(dual_bound<ArithBound<pre_universe, battery::local_memory>>(other)) {}
94 
95  /** The assignment operator can only be used in a sequential context.
96  * It is monotone but not extensive. */
97  template <class M>
98  CUDA constexpr this_type& operator=(const this_type2<M>& other) {
99  memory_type::store(val, other.value());
100  return *this;
101  }
102 
103  CUDA constexpr this_type& operator=(const this_type& other) {
104  memory_type::store(val, other.value());
105  return *this;
106  }
107 
108  CUDA constexpr value_type value() const { return memory_type::load(val); }
109 
110  CUDA constexpr operator value_type() const { return value(); }
111 
112  /** \return `true` whenever \f$ a = \top \f$, `false` otherwise.
113  * @parallel @order-preserving @increasing
114  */
115  CUDA constexpr local::B is_top() const {
116  return value() == U::top();
117  }
118 
119  /** \return `true` whenever \f$ a = \bot \f$, `false` otherwise.
120  * @parallel @order-preserving @decreasing
121  */
122  CUDA constexpr local::B is_bot() const {
123  return value() == U::bot();
124  }
125 
126  CUDA constexpr void join_top() {
127  memory_type::store(val, U::top());
128  }
129 
130  template<class M1>
131  CUDA constexpr bool join(const this_type2<M1>& other) {
132  if(other.is_bot() || *this == other || is_top()) {
133  return false;
134  }
135  if(is_bot()) {
136  memory_type::store(val, other.value());
137  }
138  else {
139  join_top();
140  }
141  return true;
142  }
143 
144  CUDA constexpr void meet_bot() {
145  memory_type::store(val, U::bot());
146  }
147 
148  template<class M1>
149  CUDA constexpr bool meet(const this_type2<M1>& other) {
150  if(is_bot() || *this == other || other.is_top()) {
151  return false;
152  }
153  if(is_top()) {
154  memory_type::store(val, other.value());
155  }
156  else {
157  meet_bot();
158  }
159  return true;
160  }
161 
162  /** \return \f$ x = k \f$ where `x` is a variable's name and `k` the current value.
163  `true` is returned whenever \f$ a = \top \f$, and `false` is returned whenever \f$ a = \bot \f$.
164  We always return an exact approximation, hence for any formula \f$ \llbracket \varphi \rrbracket = a \f$, we must have \f$ a = \llbracket \rrbracket a \llbracket \rrbracket \f$ where \f$ \rrbracket a \llbracket \f$ is the deinterpretation function. */
165  template<class Env, class Allocator = typename Env::allocator_type>
166  CUDA NI TFormula<Allocator> deinterpret(AVar avar, const Env& env, const Allocator& allocator = Allocator()) const {
167  using F = TFormula<Allocator>;
168  if(is_bot()) {
169  return F::make_false();
170  }
171  else if(is_top()) {
172  return F::make_true();
173  }
174  return F::make_binary(
175  F::make_avar(avar),
176  EQ,
177  deinterpret<F>(),
178  UNTYPED, allocator);
179  }
180 
181  /** Deinterpret the current value to a logical constant. */
182  template<class F>
183  CUDA NI F deinterpret() const {
184  return pre_universe::template deinterpret<F>(value());
185  }
186 
187  /** Under-approximates the current element \f$ a \f$ w.r.t. \f$ \rrbracket a \llbracket \f$ into `ua`.
188  * For this abstract universe, it always returns `true` since the current element \f$ a \f$ is an exact representation of \f$ \rrbracket a \llbracket \f$. */
189  CUDA constexpr bool extract(local_type& ua) const {
190  ua.val = value();
191  return true;
192  }
193 
194  /** Print the current element. */
195  CUDA NI void print() const {
196  if(is_bot()) {
197  printf("\u22A5");
198  }
199  else if(is_top()) {
200  printf("\u22A4");
201  }
202  else {
204  }
205  }
206 
207 public:
208  /** Expects a predicate of the form `x = k` or `k = x`, where `x` is any variable's name, and `k` a constant.
209  Existential formula \f$ \exists{x:T} \f$ can also be interpreted (only to top). */
210  template<bool diagnose = false, class F, class Env, class M2>
211  CUDA NI static bool interpret_tell(const F& f, const Env& env, this_type2<M2>& tell, IDiagnostics& diagnostics) {
212  if(f.is(F::E)) {
213  value_type k;
214  bool res = pre_universe::template interpret_type<diagnose>(f, k, diagnostics);
215  if(res) {
216  tell.meet(local_type(k));
217  }
218  return res;
219  }
220  else {
221  if(f.is_binary() && f.sig() == EQ) {
222  int idx_constant = f.seq(0).is_constant() ? 0 : (f.seq(1).is_constant() ? 1 : 100);
223  int idx_variable = f.seq(0).is_variable() ? 0 : (f.seq(1).is_variable() ? 1 : 100);
224  if(idx_constant + idx_variable == 1) {
225  const auto& k = f.seq(idx_constant);
226  const auto& x = f.seq(idx_variable);
227  value_type t;
228  if(pre_universe::template interpret_tell<diagnose>(k, t, diagnostics)) {
229  value_type a;
230  if(pre_universe::template interpret_ask<diagnose>(k, a, diagnostics)) {
231  if(a == t) {
232  tell.meet(local_type(t));
233  return true;
234  }
235  else {
236  RETURN_INTERPRETATION_ERROR("The constant has no exact interpretation which is required in this abstract universe.");
237  }
238  }
239  }
240  return false;
241  }
242  }
244  "Tell interpretation only supports existential quantifier and binary formulas of the form `t1 = t2` where t1 is a constant and t2 is a variable (or conversely).");
245  }
246  }
247 
248  /** Same as `interpret_tell` without the support for existential quantifier. */
249  template<bool diagnose = false, class F, class Env, class M2>
250  CUDA NI static bool interpret_ask(const F& f, const Env& env, this_type2<M2>& ask, IDiagnostics& diagnostics) {
251  if(f.is(F::E)) {
252  RETURN_INTERPRETATION_ERROR("Ask interpretation only supports binary formulas of the form `t1 = t2` where t1 is a constant and t2 is a variable (or conversely).")
253  }
254  return interpret_tell<diagnose>(f, env, ask, diagnostics);
255  }
256 
257  template<IKind kind, bool diagnose = false, class F, class Env, class M2>
258  CUDA NI static bool interpret(const F& f, const Env& env, this_type2<M2>& value, IDiagnostics& diagnostics) {
259  if constexpr(kind == IKind::ASK) {
260  return interpret_ask<diagnose>(f, env, value, diagnostics);
261  }
262  else {
263  return interpret_tell<diagnose>(f, env, value, diagnostics);
264  }
265  }
266 
267 public:
268  /** In-place projection of the result of the unary function `fun(a)`. */
269  CUDA constexpr void project(Sig fun, const local_type& a) {
270  if(a.is_bot()) {
271  meet_bot();
272  }
273  else if(!a.is_top()) {
275  }
276  }
277 
278  /** In-place projection of the result of the binary function `fun(a, b)`. */
279  CUDA constexpr void project(Sig fun, const local_type& a, const local_type& b) {
280  if(a.is_bot() || b.is_bot()) {
281  meet_bot();
282  }
283  else if(!a.is_top() && !b.is_top()) {
284  if constexpr(is_arithmetic) {
285  if(is_division(fun) && b == pre_universe::zero()) {
286  meet_bot();
287  return;
288  }
289  }
291  }
292  }
293 
294  template<class Pre2, class Mem2>
295  friend class FlatUniverse;
296 };
297 
298 // Lattice operators
299 
300 template<class Pre>
302  if(a == b) {
303  return a;
304  }
305  else if(a.is_bot() || b.is_top()) {
306  return b;
307  }
308  else if(b.is_bot() || a.is_top()) {
309  return a;
310  }
311  else {
313  }
314 }
315 
316 template<class Pre>
318  if(a == b) {
319  return a;
320  }
321  else if(a.is_bot() || b.is_top()) {
322  return a;
323  }
324  else if(b.is_bot() || a.is_top()) {
325  return b;
326  }
327  else {
329  }
330 }
331 
332 template<class Pre, class M1, class M2>
333 CUDA constexpr bool operator<=(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
334  return a.is_bot() || b.is_top() || a == b;
335 }
336 
337 template<class Pre, class M1, class M2>
338 CUDA constexpr bool operator<(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
339  return (a.is_bot() || b.is_top()) && a != b;
340 }
341 
342 template<class Pre, class M1, class M2>
343 CUDA constexpr bool operator>=(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
344  return b <= a;
345 }
346 
347 template<class Pre, class M1, class M2>
348 CUDA constexpr bool operator>(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
349  return b < a;
350 }
351 
352 template<class Pre, class M1, class M2>
353 CUDA constexpr bool operator==(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
354  return a.value() == b.value();
355 }
356 
357 template<class Pre, class M1, class M2>
358 CUDA constexpr bool operator!=(const FlatUniverse<Pre, M1>& a, const FlatUniverse<Pre, M2>& b) {
359  return a.value() != b.value();
360 }
361 
362 template<class Pre, class M>
363 std::ostream& operator<<(std::ostream &s, const FlatUniverse<Pre, M> &a) {
364  if(a.is_bot()) {
365  s << "\u22A5";
366  }
367  else if(a.is_top()) {
368  s << "\u22A4";
369  }
370  else {
371  s << a.value();
372  }
373  return s;
374 }
375 
376 } // namespace lala
377 
378 #endif
Definition: ast.hpp:38
Definition: arith_bound.hpp:118
Definition: b.hpp:10
Definition: flat_universe.hpp:30
constexpr CUDA void join_top()
Definition: flat_universe.hpp:126
constexpr static const bool sequential
Definition: flat_universe.hpp:46
constexpr CUDA FlatUniverse(const ArithBound< typename pre_universe::dual_type, M > &other)
Definition: flat_universe.hpp:92
typename pre_universe::value_type value_type
Definition: flat_universe.hpp:34
constexpr CUDA this_type & operator=(const this_type2< M > &other)
Definition: flat_universe.hpp:98
constexpr CUDA this_type & operator=(const this_type &other)
Definition: flat_universe.hpp:103
constexpr CUDA void project(Sig fun, const local_type &a, const local_type &b)
Definition: flat_universe.hpp:279
CUDA NI TFormula< Allocator > deinterpret(AVar avar, const Env &env, const Allocator &allocator=Allocator()) const
Definition: flat_universe.hpp:166
constexpr static const bool is_abstract_universe
Definition: flat_universe.hpp:45
CUDA NI F deinterpret() const
Definition: flat_universe.hpp:183
constexpr CUDA void meet_bot()
Definition: flat_universe.hpp:144
CUDA static NI bool interpret(const F &f, const Env &env, this_type2< M2 > &value, IDiagnostics &diagnostics)
Definition: flat_universe.hpp:258
Mem memory_type
Definition: flat_universe.hpp:35
constexpr CUDA FlatUniverse()
Definition: flat_universe.hpp:78
static constexpr CUDA local_type top()
Definition: flat_universe.hpp:74
constexpr static const bool is_arithmetic
Definition: flat_universe.hpp:55
CUDA NI void print() const
Definition: flat_universe.hpp:195
constexpr static const bool preserve_join
Definition: flat_universe.hpp:50
static constexpr CUDA local_type eq_k(value_type k)
Definition: flat_universe.hpp:59
constexpr CUDA bool extract(local_type &ua) const
Definition: flat_universe.hpp:189
constexpr static const bool injective_concretization
Definition: flat_universe.hpp:52
CUDA static NI bool interpret_ask(const F &f, const Env &env, this_type2< M2 > &ask, IDiagnostics &diagnostics)
Definition: flat_universe.hpp:250
constexpr CUDA bool meet(const this_type2< M1 > &other)
Definition: flat_universe.hpp:149
constexpr CUDA FlatUniverse(const ArithBound< pre_universe, M > &other)
Definition: flat_universe.hpp:88
this_type2< battery::local_memory > local_type
Definition: flat_universe.hpp:38
constexpr static const bool preserve_meet
Definition: flat_universe.hpp:51
static constexpr CUDA local_type bot()
Definition: flat_universe.hpp:69
constexpr static const char * name
Definition: flat_universe.hpp:54
constexpr CUDA bool join(const this_type2< M1 > &other)
Definition: flat_universe.hpp:131
constexpr static const bool is_totally_ordered
Definition: flat_universe.hpp:47
constexpr CUDA FlatUniverse(const this_type &other)
Definition: flat_universe.hpp:81
constexpr static const bool preserve_top
Definition: flat_universe.hpp:49
constexpr static const bool preserve_concrete_covers
Definition: flat_universe.hpp:53
constexpr CUDA local::B is_bot() const
Definition: flat_universe.hpp:122
constexpr CUDA FlatUniverse(value_type k)
Definition: flat_universe.hpp:80
constexpr CUDA value_type value() const
Definition: flat_universe.hpp:108
constexpr CUDA local::B is_top() const
Definition: flat_universe.hpp:115
constexpr CUDA FlatUniverse(this_type &&other)
Definition: flat_universe.hpp:82
constexpr CUDA FlatUniverse(const this_type2< M > &other)
Definition: flat_universe.hpp:85
CUDA static NI bool interpret_tell(const F &f, const Env &env, this_type2< M2 > &tell, IDiagnostics &diagnostics)
Definition: flat_universe.hpp:211
constexpr static const bool preserve_bot
Definition: flat_universe.hpp:48
constexpr CUDA void project(Sig fun, const local_type &a)
Definition: flat_universe.hpp:269
PreUniverse pre_universe
Definition: flat_universe.hpp:33
Definition: diagnostics.hpp:19
Definition: ast.hpp:286
#define RETURN_INTERPRETATION_ERROR(MSG)
Definition: diagnostics.hpp:155
Definition: ast.hpp:262
CUDA NI void print(const lala::Sig &sig)
Definition: ast.hpp:264
Definition: abstract_deps.hpp:14
constexpr CUDA const CartesianProduct< As... >::template type_of< i > & project(const CartesianProduct< As... > &cp)
Similar to cp.template project<i>(), just to avoid the ".template" syntax.
Definition: cartesian_product.hpp:413
constexpr CUDA bool operator==(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:504
constexpr CUDA LDual dual_bound(const L &x)
Definition: arith_bound.hpp:110
Sig
Definition: ast.hpp:94
@ EQ
Unary arithmetic function symbols.
Definition: ast.hpp:112
constexpr CUDA auto fjoin(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:464
std::ostream & operator<<(std::ostream &s, const CartesianProduct< A, As... > &cp)
Definition: cartesian_product.hpp:531
CUDA constexpr NI bool is_division(Sig sig)
Definition: ast.hpp:230
constexpr CUDA bool operator<(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:485
constexpr CUDA auto fmeet(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:471
constexpr CUDA bool operator>(const CartesianProduct< As... > &a, const CartesianProduct< Bs... > &b)
Definition: cartesian_product.hpp:498
#define UNTYPED
Definition: sort.hpp:21