Lattice Land Core Library
simplifier.hpp
Go to the documentation of this file.
1 // Copyright 2023 Pierre Talbot
2 
3 #ifndef LALA_CORE_SIMPLIFIER_HPP
4 #define LALA_CORE_SIMPLIFIER_HPP
5 
6 #include "logic/logic.hpp"
8 #include "abstract_deps.hpp"
9 #include "battery/dynamic_bitset.hpp"
10 
11 namespace lala {
12 
19 
20  template <class StatPrinter>
21  CUDA void print(StatPrinter& stats, size_t fp_iter) {
22  stats.print_stat_fp_iter("eliminated_entailed_constraints", fp_iter, eliminated_entailed_constraints);
23  stats.print_stat_fp_iter("eliminated_equality_constraints", fp_iter, eliminated_equality_constraints);
24  stats.print_stat_fp_iter("eliminated_constraints_by_icse", fp_iter, eliminated_constraints_by_icse);
25  stats.print_stat_fp_iter("eliminated_constraints_by_as", fp_iter, eliminated_constraints_by_as);
26  stats.print_stat_fp_iter("icse_fixpoint_iterations", fp_iter, icse_fixpoint_iterations);
27  }
28 
29  template <class StatPrinter>
30  CUDA void print(StatPrinter& stats) {
31  stats.print_stat("eliminated_entailed_constraints", eliminated_entailed_constraints);
32  stats.print_stat("eliminated_equality_constraints", eliminated_equality_constraints);
33  stats.print_stat("eliminated_constraints_by_icse", eliminated_constraints_by_icse);
34  stats.print_stat("eliminated_constraints_by_as", eliminated_constraints_by_as);
35  stats.print_stat("icse_fixpoint_iterations", icse_fixpoint_iterations);
36  }
37 
38  CUDA void merge(SimplifierStats& other) {
44  }
45 };
46 
47 /** This abstract domain works at the level of logical formulas.
48  * It deduces the formula by performing a number of simplifications w.r.t. an underlying abstract domain including:
49  * 1. Removing assigned variables.
50  * 2. Removing unused variables.
51  * 3. Removing entailed formulas.
52  * 4. Removing variable equality by tracking equivalence classes.
53  *
54  * The simplified formula can be obtained by calling `deinterpret()`.
55  * Given a solution to the simplified formula, the value of the variables deleted can be obtained by calling `print_variable()`.
56  */
57 template<class A, class Allocator>
58 class Simplifier {
59 public:
60  using allocator_type = Allocator;
61  using sub_type = A;
62  using sub_allocator_type = typename sub_type::allocator_type;
63  using universe_type = typename sub_type::universe_type;
64  using memory_type = typename universe_type::memory_type;
66 
67  constexpr static const bool is_abstract_universe = false;
68  constexpr static const bool sequential = universe_type::sequential;
69  constexpr static const bool is_totally_ordered = false;
70  // Note that I did not define the concretization function formally yet... This is not yet an fully fledged abstract domain, we need to work more on it!
71  constexpr static const bool preserve_bot = true;
72  constexpr static const bool preserve_top = true;
73  constexpr static const bool preserve_join = true;
74  constexpr static const bool preserve_meet = true;
75  constexpr static const bool injective_concretization = true;
76  constexpr static const bool preserve_concrete_covers = true;
77  constexpr static const char* name = "Simplifier";
78 
79  template<class A2, class Alloc2>
80  friend class Simplifier;
81 
82  using formula_sequence = battery::vector<TFormula<allocator_type>, allocator_type>;
83 
84 private:
85  AType atype;
86  AType store_aty;
88  // We keep a copy of the variable environment in which the formula has been initially interpreted.
89  // This is necessary to project the variables and ask constraints in the subdomain during deduction.
91  // Read-only conjunctive formula, where each is treated independently.
92  formula_sequence formulas;
93  // Write-only (accessed in only 1 thread because this is not a parallel lattice entity) conjunctive formula, the main operation is a map between formulas and simplified_formulas.
94  formula_sequence simplified_formulas;
95  // eliminated_variables[i] is `true` when the variable `i` can be removed because it is assigned to a constant.
96  battery::dynamic_bitset<memory_type, allocator_type> eliminated_variables;
97  // eliminated_formulas[i] is `true` when the formula `i` is entailed.
98  battery::dynamic_bitset<memory_type, allocator_type> eliminated_formulas;
99  // `equivalence_classes[i]` contains the index of the representative variable in the equivalence class of the variable `i`.
100  battery::vector<ZUB<int, memory_type>, allocator_type> equivalence_classes;
101  // `constants[i]` contains the universe value of the representative variables `i`, aggregated by meet on the values of all variables in the equivalence class.
102  battery::vector<universe_type, allocator_type> constants;
103 
104 public:
105  CUDA Simplifier(AType atype
106  , AType store_aty
108  , const allocator_type& alloc = allocator_type())
109  : atype(atype), store_aty(store_aty), sub(sub), env(alloc)
110  , formulas(alloc), simplified_formulas(alloc)
111  , eliminated_variables(alloc), eliminated_formulas(alloc)
112  , equivalence_classes(alloc), constants(alloc)
113  {}
114 
115  CUDA Simplifier(this_type&& other)
116  : atype(other.atype), store_aty(other.store_aty), sub(std::move(other.sub)), env(other.env)
117  , formulas(std::move(other.formulas)), simplified_formulas(std::move(other.simplified_formulas))
118  , eliminated_variables(std::move(other.eliminated_variables)), eliminated_formulas(std::move(other.eliminated_formulas))
119  , equivalence_classes(std::move(other.equivalence_classes)), constants(std::move(other.constants))
120  {}
121 
122  struct light_copy_tag {};
123 
124  // This return a light copy of `other`, basically just keeping the equivalence classes and the environment to be able to print solutions and call `representative`.
125  template<class A2, class Alloc2>
127  : atype(other.atype)
128  , store_aty(other.store_aty)
129  , sub(sub)
130  , env(other.env, alloc)
131  , equivalence_classes(other.equivalence_classes, alloc)
132  , constants(other.constants, alloc)
133  {}
134 
136  return formulas.get_allocator();
137  }
138 
139  CUDA AType aty() const {
140  return atype;
141  }
142 
143  /** @parallel @order-preserving @increasing */
144  CUDA local::B is_bot() const {
145  return sub->is_bot();
146  }
147 
148  /** Returns the number of variables currently represented by this abstract element. */
149  CUDA size_t vars() const {
150  return equivalence_classes.size();
151  }
152 
153  template <class Alloc>
154  struct tell_type {
155  int num_vars;
158  tell_type(const Alloc& alloc = Alloc())
159  : num_vars(0), formulas(alloc), env(nullptr)
160  {}
161  };
162 
163 public:
164  template <bool diagnose = false, class F, class Env, class Alloc2>
165  CUDA NI bool interpret_tell(const F& f, Env& env, tell_type<Alloc2>& tell, IDiagnostics& diagnostics) const {
166  if(f.is(F::E)) {
167  tell.num_vars++;
168  tell.env = &env;
169  }
170  else {
171  tell.formulas.push_back(f);
172  tell.env = &env;
173  }
174  return true;
175  }
176 
177  template <IKind kind, bool diagnose = false, class F, class Env, class Alloc2>
178  CUDA bool interpret(const F& f, Env& env, tell_type<Alloc2>& tell, IDiagnostics& diagnostics) const {
179  return interpret_tell<diagnose>(f, env, tell, diagnostics);
180  }
181 
182  CUDA void initialize(int num_vars, int num_cons) {
183  eliminated_variables.resize(num_vars);
184  eliminated_variables.reset();
185  eliminated_formulas.resize(num_cons);
186  eliminated_formulas.reset();
187  constants.resize(num_vars);
188  for(int i = 0; i < constants.size(); ++i) {
189  constants[i].join_top();
190  }
191  equivalence_classes.resize(num_vars);
192  for(int i = 0; i < equivalence_classes.size(); ++i) {
193  equivalence_classes[i] = i;
194  }
195  }
196 
197  /** We initialize the equivalence classes and var/cons elimination masks.
198  * Further, we eliminate all constraints in `tnf` that are not in TNF.
199  * (It is the existential quantifiers and unary constraints that are re-generated from the underlying store later.)
200  */
201  template <class Seq>
202  CUDA void initialize_tnf(int num_vars, const Seq& tnf) {
203  initialize(num_vars, tnf.size());
204  int z = 0;
205  for(int i = 0; i < tnf.size(); ++i) {
206  if(!is_tnf(tnf[i])) {
207  ++z;
208  eliminate(eliminated_formulas, i);
209  }
210  }
211  }
212 
213 public:
214  /** @sequential */
215  template <class Alloc2>
216  CUDA bool deduce(tell_type<Alloc2>&& t) {
217  if(t.env != nullptr) { // could be nullptr if the interpreted formula is true.
218  env = *(t.env);
219  initialize(t.num_vars, t.formulas.size());
220  formulas = std::move(t.formulas);
221  simplified_formulas.resize(formulas.size());
222  return true;
223  }
224  return false;
225  }
226 
227  // `f` must be a formula from `formulas`.
228  CUDA AVar var_of(const TFormula<allocator_type>& f) const {
229  using F = TFormula<allocator_type>;
230  if(f.is(F::LV)) {
231  assert(env.variable_of(f.lv()).has_value());
232  assert(env.variable_of(f.lv())->get().avar_of(store_aty).has_value());
233  return env.variable_of(f.lv())->get().avar_of(store_aty).value();
234  }
235  else {
236  assert(f.is(F::V));
237  assert(env[f.v()].avar_of(store_aty).has_value());
238  return env[f.v()].avar_of(store_aty).value();
239  }
240  }
241 
242 public:
243  /** Print the abstract universe of `vname` taking into account simplifications (representative variable and constant).
244  */
245  template <class Alloc, class Abs, class Env>
246  CUDA void print_variable(const LVar<Alloc>& vname, const Env& benv, const Abs& b) const {
247  assert(env.variable_of(vname).has_value());
248  const auto& local_var = env.variable_of(vname)->get();
249  assert(local_var.avar_of(store_aty).has_value());
250  int rep = equivalence_classes[local_var.avar_of(store_aty)->vid()];
251  const auto& rep_name = env.name_of(AVar{store_aty, rep});
252  auto benv_variable = benv.variable_of(rep_name);
253  if(benv_variable.has_value()) {
254  benv_variable->get().sort.print_value(b.project(benv_variable->get().avars[0]));
255  }
256  else {
257  local_var.sort.print_value(constants[rep]);
258  }
259  }
260 
261 private:
262  /** \return `true` if mask[i] was changed. */
263  CUDA local::B eliminate(battery::dynamic_bitset<memory_type, allocator_type>& mask, size_t i) {
264  if(!mask.test(i)) {
265  mask.set(i, true);
266  return true;
267  }
268  return false;
269  }
270 
271  CUDA local::B eliminate(battery::dynamic_bitset<memory_type, allocator_type>& mask, size_t i, size_t& eliminated_constraints) {
272  if(eliminate(mask, i)) {
273  ++eliminated_constraints;
274  return true;
275  }
276  return false;
277  }
278 
279  // We eliminate the representative of the variable `i` if it is a singleton.
280  CUDA local::B vdeduce(int i) {
281  const auto& u = sub->project(AVar{store_aty, i});
282  size_t j = find(i);
283  local::B has_changed = constants[j].meet(u);
284  if(!constants[j].is_bot() && constants[j].lb().value() == constants[j].ub().value()) {
285  has_changed |= eliminate(eliminated_variables, j);
286  }
287  return has_changed;
288  }
289 
290 public:
291  CUDA local::B cons_deduce(int i) {
292  using F = TFormula<allocator_type>;
293  local::B has_changed = false;
294  // Eliminate constraint of the form x = y, and add x,y in the same equivalence class.
295  if(is_var_equality(formulas[i])) {
296  size_t s = 0;
297  return replace_by_equivalence(var_of(formulas[i].seq(0)), var_of(formulas[i].seq(1)), i, s);
298  }
299  else {
300  // Eliminate entailed formulas.
301  IDiagnostics diagnostics;
302  typename sub_type::template ask_type<allocator_type> ask;
303 #ifdef _MSC_VER // Avoid MSVC compiler bug. See https://stackoverflow.com/questions/77144003/use-of-template-keyword-before-dependent-template-name
304  if(sub->interpret_ask(formulas[i], env, ask, diagnostics))
305 #else
306  if(sub->template interpret_ask(formulas[i], env, ask, diagnostics))
307 #endif
308  {
309  if(sub->ask(ask)) {
310  return eliminate(eliminated_formulas, i);
311  }
312  }
313  // Replace assigned variables by constants.
314  // Note that since everything is in a fixed point loop, both the constant and the equivalence class might be updated later on.
315  // This is one of the reasons we cannot update `formulas` in-place: we would not be able to update the constant a second time (since the variable would be eliminated).
316  auto f = formulas[i].map([&](const F& f, const F& parent) {
317  if(f.is_variable()) {
318  AVar x = var_of(f);
319  if(eliminated_variables.test(x.vid())) {
320  auto k = constants[x.vid()].template deinterpret<F>();
321  if(env[x].sort.is_bool() && k.is(F::Z) && parent.is_logical()) {
322  return k.z() == 0 ? F::make_false() : F::make_true();
323  }
324  return std::move(k);
325  }
326  else if(equivalence_classes[x.vid()] != x.vid()) {
327  return F::make_lvar(UNTYPED, env.name_of(AVar{store_aty, equivalence_classes[x.vid()]}));
328  }
329  return f.map_atype(UNTYPED);
330  }
331  return f;
332  });
333  f = eval(f);
334  if(f.is_true()) {
335  return eliminate(eliminated_formulas, i);
336  }
337  if(f != simplified_formulas[i]) {
338  simplified_formulas[i] = f;
339  return true;
340  }
341  return false;
342  }
343  }
344 
345  /** We have one deduction operator per variable and one per constraint in the interpreted formula. */
346  CUDA size_t num_deductions() const {
347  return constants.size() + formulas.size();
348  }
349 
350  CUDA local::B deduce(size_t i) {
351  assert(i < num_deductions());
352  if(i < constants.size()) {
353  return vdeduce(i);
354  }
355  else {
356  return cons_deduce(i - constants.size());
357  }
358  }
359 
360  template <class Env>
361  CUDA void init_env(const Env& env) {
362  this->env = env;
363  }
364 
365 private:
366  CUDA local::B replace_by_equivalence(AVar x, AVar y, int i, size_t& eliminated_constraints) {
367  return replace_by_equivalence(x.vid(), y.vid(), i, eliminated_constraints);
368  }
369 
370  CUDA local::B replace_by_equivalence(int x, int y, int i, size_t& eliminated_constraints) {
371  merge(x, y);
372  return eliminate(eliminated_formulas, i, eliminated_constraints);
373  }
374 
375 public:
376  /** I-CSE algorithm.
377  * For each pair of TNF constraints `x <=> y op z` and `x' <=> y' op' z'`, whenever `[y'] = [y]`, `op = op'` and `[z] = [z']`, we add the equivalence `x = x'` and eliminate the second constraint.
378  * Note that [x] represents the equivalence class of `x`.
379  * To avoid an algorithm running in O(n^2), we use a hash map to detect syntactical equivalence between `y op z` and `y' op z'`.
380  * Further, for commutative operators, we redefine the equality function.
381  *
382  * This algorithm is applied until a fixpoint is reached.
383  * \return The number of formulas eliminated.
384  */
385  template <class Seq>
386  CUDA bool i_cse(const Seq& tnf, SimplifierStats& stats) {
387  auto hash = [](const std::tuple<int,Sig,int> &right_tnf) {
388  return static_cast<size_t>(std::get<0>(right_tnf))
389  * static_cast<size_t>(std::get<1>(right_tnf))
390  * static_cast<size_t>(std::get<2>(right_tnf));
391  };
392  // This equality function also checks for commutative operators (in which case the hash will also be the same).
393  auto equal = [](const std::tuple<int,Sig,int> &l, const std::tuple<int,Sig,int> &r){
394  return std::get<1>(l) == std::get<1>(r)
395  && ((std::get<0>(l) == std::get<0>(r) && std::get<2>(l) == std::get<2>(r)));
396  // || (is_commutative(std::get<1>(l)) && std::get<0>(l) == std::get<2>(r) && std::get<2>(l) == std::get<0>(r)));
397  };
398  std::unordered_map<std::tuple<int,Sig,int>, int, decltype(hash), decltype(equal)> cs(tnf.size(), hash, equal);
399  bool has_changed = false;
400  bool local_has_changed = true;
401  while(local_has_changed) {
402  ++stats.icse_fixpoint_iterations;
403  local_has_changed = false;
404  cs.clear();
405  for(int i = 0; i < tnf.size(); ++i) {
406  if(!eliminated_formulas.test(i)) {
407  int x = find(var_of(tnf[i].seq(0)).vid());
408  int y = find(var_of(tnf[i].seq(1).seq(0)).vid());
409  int z = find(var_of(tnf[i].seq(1).seq(1)).vid());
410  Sig op = tnf[i].seq(1).sig();
411  auto p = cs.insert(std::make_pair(std::make_tuple(y, op, z), x));
412  if(!p.second) { // `p.second` is false if we detect a collision.
413  local_has_changed |= replace_by_equivalence(x, p.first->second, i, stats.eliminated_constraints_by_icse);
414  if(local_has_changed) {
415  has_changed = true;
416  }
417  }
418  }
419  }
420  }
421  return has_changed;
422  }
423 
424  /** Perform algebraic simplification on the TNF.
425  * The non-eliminated constraints are assumed to be in TNF.
426  */
427  template <class Seq>
428  CUDA bool algebraic_simplify(Seq& tnf, SimplifierStats& stats) {
429  using F = typename Seq::value_type;
430  constexpr universe_type ZERO(0,0);
431  constexpr universe_type ONE(1,1);
432  auto& vstore = *sub;
433  size_t elim_cons = stats.eliminated_constraints_by_as;
434  bool has_changed = false;
435  for(int i = 0; i < tnf.size(); ++i) {
436  if(!eliminated_formulas.test(i)) {
437  int x = find(var_of(tnf[i].seq(0)).vid());
438  int y = find(var_of(tnf[i].seq(1).seq(0)).vid());
439  int z = find(var_of(tnf[i].seq(1).seq(1)).vid());
440  Sig sig = tnf[i].seq(1).sig();
441  bool x_is_c = vstore[x].lb() == vstore[x].ub();
442  bool y_is_c = vstore[y].lb() == vstore[y].ub();
443  bool z_is_c = vstore[z].lb() == vstore[z].ub();
444  /** Put constants on the right side of the operator. */
445  if(is_commutative(sig) && y_is_c) {
446  std::swap(y, z);
447  }
448  switch(sig) {
449  case ADD: {
450  /** x = x + z -> z = 0 and x = y + x -> y = 0 */
451  if(x == y || x == z) {
452  int y2 = x == y ? z : y;
453  vstore[y2].meet(ZERO);
454  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
455  }
456  /** x = y + 0 -> x = y */
457  else if(vstore[z] == ZERO) {
458  replace_by_equivalence(x, y, i, stats.eliminated_constraints_by_as);
459  }
460  break;
461  }
462  case MUL: {
463  /** x = x * k -> x = 0 (if k != 1), true otherwise. */
464  if(x == y && z_is_c) {
465  if(vstore[z] != ONE) {
466  has_changed |= vstore[x].meet(ZERO);
467  }
468  else { /* true */ }
469  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
470  }
471  /** k = y * y -> y \in [-n,n] (if n * n = k), false (otherwise).
472  * This is an over-approximation, thus we cannot eliminate the constraint. */
473  else if(x_is_c && y == z) {
474  auto n = battery::iroots_up(vstore[x].lb().value(), 2);
475  if(n * n == vstore[x].lb()) {
476  has_changed |= vstore[y].meet(universe_type(-n, n));
477  }
478  else {
479  vstore[y].meet_bot(); // false because k is not a perfect square.
480  }
481  }
482  /** x = y * 1 */
483  else if(vstore[z] == ONE) {
484  replace_by_equivalence(x, y, i, stats.eliminated_constraints_by_as);
485  }
486  /** x = y * 2 -> x = y + y */
487  else if(vstore[z] == universe_type(2,2)) {
488  tnf[i].seq(1) = F::make_binary(
489  F::make_lvar(UNTYPED, env.name_of(AVar{store_aty, y})),
490  ADD,
491  F::make_lvar(UNTYPED, env.name_of(AVar{store_aty, y})));
492  }
493  /** x = x * x */
494  else if(x == y && y == z) {
495  vstore[x].meet(universe_type(0,1));
496  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
497  }
498  break;
499  }
500  case EDIV: {
501  /** x = 1/x -> x \in {-1,1} (over-approximated so the constraint cannot not eliminated) */
502  if(vstore[y] == ONE && x == z) {
503  has_changed |= vstore[x].meet(universe_type(-1,1));
504  }
505  else if(vstore[y] == ZERO && x == z) {
506  vstore[x].meet_bot();
507  }
508  else if(x_is_c && y == z) {
509  if(vstore[x] != ONE) {
510  vstore[y].meet_bot();
511  }
512  else { /* x != 0, not supported. */ }
513  }
514  else if(vstore[z] == ONE) {
515  replace_by_equivalence(x, y, i, stats.eliminated_constraints_by_as);
516  }
517  else if(x == y && y == z) {
518  vstore[x].meet(ONE);
519  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
520  }
521  break;
522  }
523  case EMOD: {
524  /** x = x mod x -> x = 0 */
525  if(x == y && y == z) {
526  vstore[x].meet(ZERO);
527  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
528  }
529  /** x = x mod k -> x in [0, abs(k) - 1] */
530  else if(x == y && z_is_c) {
531  vstore[x].meet(universe_type(0, std::abs(vstore[z].lb()) - 1));
532  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
533  }
534  /** x = k mod x is always false. */
535  else if(x == z && y_is_c) {
536  vstore[x].meet_bot();
537  }
538  /** 0 = x mod x is always true. */
539  else if(y == z && vstore[x] == ZERO) {
540  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
541  }
542  break;
543  }
544  case MIN:
545  case MAX: {
546  /** x = min/max(y, y) -> x = y */
547  if(y == z) {
548  replace_by_equivalence(x, y, i, stats.eliminated_constraints_by_as);
549  }
550  /** x = min(x, y) -> 1 = (x <= y) */
551  /** x = max(x, y) -> 1 = (y <= x) */
552  else if(x == y || x == z) {
553  int y2 = x == y ? z : y;
554  int x2 = x;
555  if(sig == MAX) {
556  std::swap(x2, y2);
557  }
558  tnf[i].seq(0) = F::make_lvar(UNTYPED, LVar<allocator_type>("__CONSTANT_1"));
559  tnf[i].seq(1) = F::make_binary(
560  F::make_lvar(UNTYPED, env.name_of(AVar{store_aty, x2})),
561  LEQ,
562  F::make_lvar(UNTYPED, env.name_of(AVar{store_aty, y2})));
563  }
564  break;
565  }
566  case EQUIV:
567  case EQ: {
568  if(vstore[x] == ONE) {
569  replace_by_equivalence(y, z, i, stats.eliminated_equality_constraints);
570  }
571  /** x = (x = k) -> false (k = 0), x = 1 (k = 1) or x = 0 */
572  else if(x == y && z_is_c) {
573  if(vstore[z] == ZERO) {
574  vstore[x].meet_bot();
575  }
576  else if(vstore[z] == ONE) {
577  vstore[x].meet(ONE);
578  }
579  else {
580  vstore[x].meet(ZERO);
581  }
582  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
583  }
584  else if(y == z) {
585  vstore[x].meet(ONE);
586  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
587  }
588  break;
589  }
590  case LEQ: {
591  /** x = (x <= k) -> x = 0 (k < 0), x = 1 (k > 0), false (k = 0) */
592  if(x == y && z_is_c) {
593  int k = vstore[z].lb();
594  if(k < 0) {
595  vstore[x].meet(ZERO);
596  }
597  else if(k > 0) {
598  vstore[x].meet(ONE);
599  }
600  else { /** no solution with k == 0 */
601  vstore[x].meet_bot();
602  }
603  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
604  }
605  /** x = (k <= x) -> x = 0 (k > 1), x = 1 (k <= 1), true (k = 1). */
606  else if(x == z && y_is_c) {
607  int k = vstore[y].lb();
608  if(k > 1) {
609  vstore[x].meet(ZERO);
610  }
611  else if(k < 1) {
612  vstore[x].meet(ONE);
613  }
614  else { /** true whenever k = 1 */ }
615  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
616  }
617  else if(x == y && y == z) {
618  vstore[x].meet(ONE);
619  eliminate(eliminated_formulas, i, stats.eliminated_constraints_by_as);
620  }
621  break;
622  }
623  default:
624  printf("Unsupported operator %s in TNF algebraic simplification.\n", string_of_sig(sig));
625  }
626  }
627  }
628  return has_changed || elim_cons != stats.eliminated_constraints_by_as;
629  }
630 
631 private:
632  /** Find operation in union-find algorithm.
633  * An additional invariant is that:
634  * forall x. store[x] >= store[find(x)]
635  * That is, the root node contains the meet of all domains in the equivalence class.
636  */
637  CUDA int find(int x) {
638  int root = x;
639  while(equivalence_classes[root] != root) {
640  root = equivalence_classes[root];
641  }
642  while(equivalence_classes[x] != root) {
643  int parent = equivalence_classes[x];
644  sub->embed(AVar{store_aty, parent}, (*sub)[x]);
645  equivalence_classes[x] = root;
646  x = parent;
647  }
648  return root;
649  }
650 
651  /** A simple merge operation in union-find algorithm. */
652  CUDA void merge(int x, int y) {
653  int rx = find(x);
654  int ry = find(y);
655  if(rx != ry) {
656  // Easier to debug and more robust for testing: use the root with the smallest index.
657  if(rx < ry) battery::swap(rx, ry);
658  equivalence_classes[rx] = ry;
659  sub->embed(AVar{store_aty, ry}, (*sub)[rx]);
660  }
661  }
662 
663 public:
665  for(int i = 0; i < equivalence_classes.size(); ++i) {
666  int root = find(i);
667  sub->embed(AVar{store_aty, root}, (*sub)[i]);
668  }
669  for(int i = 0; i < equivalence_classes.size(); ++i) {
670  int root = find(i);
671  sub->embed(AVar{store_aty, i}, (*sub)[root]);
672  }
673  }
674 
675  template <class B, class Seq>
676  CUDA void eliminate_entailed_constraints(const B& b, const Seq& tnf, SimplifierStats& stats) {
677  for(int i = 0; i < tnf.size(); ++i) {
678  if(!is_tnf(tnf[i]) || eliminated_formulas.test(i)) {
679  continue;
680  }
681  IDiagnostics diagnostics;
682  typename sub_type::template ask_type<allocator_type> ask_value;
683  bool ask_success = b.interpret_ask(tnf[i], env, ask_value, diagnostics);
684  assert(ask_success);
685  if(b.ask(ask_value)) {
686  eliminate(eliminated_formulas, i, stats.eliminated_entailed_constraints);
687  }
688  }
689  }
690 
691  template <class Seq>
692  CUDA void eliminate_useless_variables(const Seq& tnf, size_t& num_eliminated_variables) {
693  /** Keep only the variables that are representative and occur in at least one TNF constraint. */
694  eliminated_variables.set();
695  for(int i = 0; i < tnf.size(); ++i) {
696  if(!eliminated_formulas.test(i)) {
697  eliminated_variables.set(find(var_of(tnf[i].seq(0)).vid()), false);
698  eliminated_variables.set(find(var_of(tnf[i].seq(1).seq(0)).vid()), false);
699  eliminated_variables.set(find(var_of(tnf[i].seq(1).seq(1)).vid()), false);
700  }
701  }
702  num_eliminated_variables = eliminated_variables.count();
703  /** Eliminated variables might still occur in the variables we need to print.
704  * Therefore, we save them in `constants`. */
705  for(int i = 0; i < sub->vars(); ++i) {
706  int root = find(i);
707  constants[i] = sub->project(AVar{store_aty, root});
708  }
709  }
710 
711 private:
712  template <class F>
713  void substitute_var(F& f) const {
714  if(f.is_variable()) {
715  AVar x = var_of(f);
716  // Note: `find` is non-const, and anyways, `eliminate_useless_variables` is called before, hence find(x) = equivalence_classes[x].
717  int root = equivalence_classes[x.vid()];
718  if(x.vid() != root) {
719  x = AVar{store_aty, root};
720  f = F::make_lvar(store_aty, env.name_of(x));
721  }
722  /** If the variable is eliminated, but still appear in a constraint at this stage, it means it's an "extra" constraint not in TNF, and therefore substitute the variable by its constant. */
723  if(eliminated_variables.test(x.vid())) {
724  auto k = (*sub)[x.vid()].template deinterpret<F>();
725  if(env[x].sort.is_bool() && k.is(F::Z)) {
726  f = k.z() == 0 ? F::make_false() : F::make_true();
727  }
728  else {
729  f = std::move(k);
730  }
731  }
732  }
733  }
734 
735 public:
736  /** Given any formula (not necessarily in TNF), we substitute each variable with its representative variable or a constant if it got eliminated. */
737  template <class F>
738  CUDA void substitute(F& f) const {
739  f.inplace_map([this](F& leaf, const F&) { substitute_var(leaf); });
740  }
741 
742  CUDA size_t num_vars_after_elimination() const {
743  size_t keep = 0;
744  for(int i = 0; i < equivalence_classes.size(); ++i) {
745  if(equivalence_classes[i] == i && !eliminated_variables.test(i)) {
746  ++keep;
747  }
748  }
749  return keep;
750  }
751 
752 private:
753  // Deinterpret the existential quantifiers (only one per equivalence classes), and the domain of each variable.
754  template <class Seq>
755  CUDA void deinterpret_vars(Seq& seq) {
756  using F = TFormula<allocator_type>;
757  for(int i = 0; i < equivalence_classes.size(); ++i) {
758  if(equivalence_classes[i] == i && !eliminated_variables.test(i)) {
759  const auto& x = env[AVar{store_aty, i}];
760  seq.push_back(F::make_exists(UNTYPED, x.name, x.sort));
761  auto domain_constraint = constants[i].deinterpret(AVar{store_aty, i}, env, get_allocator());
762  map_avar_to_lvar(domain_constraint, env, true);
763  seq.push_back(domain_constraint);
764  }
765  }
766  }
767 
768  template <class Seq1, class Seq2>
769  CUDA void deinterpret_constraints(Seq1& seq, const Seq2& formulas, bool enable_substitute = false) {
770  // Deinterpret the simplified formulas.
771  for(int i = 0; i < formulas.size(); ++i) {
772  if(!eliminated_formulas.test(i)) {
773  seq.push_back(formulas[i]);
774  if(enable_substitute) {
775  substitute(seq.back());
776  }
777  }
778  }
779  }
780 
781 public:
782  template <class Seq>
783  CUDA NI TFormula<allocator_type> deinterpret(const Seq& source, bool substitute) {
784  using F = TFormula<allocator_type>;
785  typename F::Sequence seq(get_allocator());
786  if(is_bot()) {
787  return F::make_false();
788  }
789  deinterpret_vars(seq);
790  deinterpret_constraints(seq, source, substitute);
791  return seq.size() == 0 ? F::make_true() : F::make_nary(AND, std::move(seq));
792  }
793 
795  return deinterpret(simplified_formulas, false);
796  }
797 };
798 
799 } // namespace lala
800 
801 #endif
Definition: ast.hpp:38
constexpr CUDA int vid() const
Definition: ast.hpp:69
Definition: b.hpp:10
Definition: diagnostics.hpp:19
Definition: simplifier.hpp:58
CUDA NI TFormula< allocator_type > deinterpret()
Definition: simplifier.hpp:794
constexpr static const bool is_totally_ordered
Definition: simplifier.hpp:69
constexpr static const bool preserve_join
Definition: simplifier.hpp:73
CUDA allocator_type get_allocator() const
Definition: simplifier.hpp:135
constexpr static const bool preserve_concrete_covers
Definition: simplifier.hpp:76
CUDA local::B deduce(size_t i)
Definition: simplifier.hpp:350
CUDA Simplifier(this_type &&other)
Definition: simplifier.hpp:115
CUDA bool deduce(tell_type< Alloc2 > &&t)
Definition: simplifier.hpp:216
Allocator allocator_type
Definition: simplifier.hpp:60
constexpr static const bool preserve_meet
Definition: simplifier.hpp:74
constexpr static const bool preserve_top
Definition: simplifier.hpp:72
constexpr static const bool is_abstract_universe
Definition: simplifier.hpp:67
A sub_type
Definition: simplifier.hpp:61
CUDA size_t vars() const
Definition: simplifier.hpp:149
CUDA void init_env(const Env &env)
Definition: simplifier.hpp:361
CUDA local::B is_bot() const
Definition: simplifier.hpp:144
constexpr static const bool sequential
Definition: simplifier.hpp:68
CUDA local::B cons_deduce(int i)
Definition: simplifier.hpp:291
CUDA void eliminate_entailed_constraints(const B &b, const Seq &tnf, SimplifierStats &stats)
Definition: simplifier.hpp:676
CUDA AVar var_of(const TFormula< allocator_type > &f) const
Definition: simplifier.hpp:228
constexpr static const bool injective_concretization
Definition: simplifier.hpp:75
CUDA NI bool interpret_tell(const F &f, Env &env, tell_type< Alloc2 > &tell, IDiagnostics &diagnostics) const
Definition: simplifier.hpp:165
battery::vector< TFormula< allocator_type >, allocator_type > formula_sequence
Definition: simplifier.hpp:82
CUDA bool interpret(const F &f, Env &env, tell_type< Alloc2 > &tell, IDiagnostics &diagnostics) const
Definition: simplifier.hpp:178
CUDA bool algebraic_simplify(Seq &tnf, SimplifierStats &stats)
Definition: simplifier.hpp:428
CUDA bool i_cse(const Seq &tnf, SimplifierStats &stats)
Definition: simplifier.hpp:386
CUDA size_t num_vars_after_elimination() const
Definition: simplifier.hpp:742
CUDA AType aty() const
Definition: simplifier.hpp:139
CUDA void eliminate_useless_variables(const Seq &tnf, size_t &num_eliminated_variables)
Definition: simplifier.hpp:692
CUDA Simplifier(AType atype, AType store_aty, abstract_ptr< sub_type > sub, const allocator_type &alloc=allocator_type())
Definition: simplifier.hpp:105
CUDA size_t num_deductions() const
Definition: simplifier.hpp:346
typename sub_type::allocator_type sub_allocator_type
Definition: simplifier.hpp:62
typename universe_type::memory_type memory_type
Definition: simplifier.hpp:64
CUDA void substitute(F &f) const
Definition: simplifier.hpp:738
constexpr static const bool preserve_bot
Definition: simplifier.hpp:71
CUDA void initialize(int num_vars, int num_cons)
Definition: simplifier.hpp:182
CUDA void initialize_tnf(int num_vars, const Seq &tnf)
Definition: simplifier.hpp:202
CUDA void print_variable(const LVar< Alloc > &vname, const Env &benv, const Abs &b) const
Definition: simplifier.hpp:246
CUDA Simplifier(const Simplifier< A2, Alloc2 > &other, light_copy_tag tag, abstract_ptr< sub_type > sub, const allocator_type &alloc=allocator_type())
Definition: simplifier.hpp:126
CUDA NI TFormula< allocator_type > deinterpret(const Seq &source, bool substitute)
Definition: simplifier.hpp:783
typename sub_type::universe_type universe_type
Definition: simplifier.hpp:63
CUDA void meet_equivalence_classes()
Definition: simplifier.hpp:664
constexpr static const char * name
Definition: simplifier.hpp:77
CUDA const LVar< Allocator > & lv() const
Definition: ast.hpp:579
CUDA bool is(size_t kind) const
Definition: ast.hpp:526
CUDA AVar v() const
Definition: ast.hpp:575
CUDA NI std::optional< std::reference_wrapper< const variable_type > > variable_of(const char *lv) const
Definition: env.hpp:478
CUDA const bstring & name_of(AVar av) const
Definition: env.hpp:517
::lala::B<::battery::local_memory > B
Definition: b.hpp:12
Definition: abstract_deps.hpp:14
CUDA NI void map_avar_to_lvar(F &f, const Env &env, bool erase_type=false)
Definition: algorithm.hpp:438
CUDA NI const char * string_of_sig(Sig sig)
Definition: ast.hpp:121
Sig
Definition: ast.hpp:94
@ LEQ
Unary arithmetic function symbols.
Definition: ast.hpp:113
@ EQ
Unary arithmetic function symbols.
Definition: ast.hpp:112
@ ADD
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ MIN
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ EDIV
Unary arithmetic function symbols.
Definition: ast.hpp:105
@ MAX
Binary arithmetic function symbols.
Definition: ast.hpp:97
@ AND
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ EQUIV
Unary arithmetic function symbols.
Definition: ast.hpp:114
@ MUL
Unary arithmetic function symbols.
Definition: ast.hpp:97
@ EMOD
Euclidean division (Boute T. R. (1992). The Euclidean definition of the functions div and mod)....
Definition: ast.hpp:105
battery::shared_ptr< A, typename A::allocator_type > abstract_ptr
Definition: abstract_deps.hpp:17
int AType
Definition: sort.hpp:18
CUDA NI bool is_var_equality(const TFormula< Allocator, ExtendedSig > &f)
Definition: algorithm.hpp:33
CUDA NI int num_vars(const F &f)
Definition: algorithm.hpp:154
battery::string< Allocator > LVar
Definition: ast.hpp:25
CUDA NI F eval(const F &f)
Definition: algorithm.hpp:814
CUDA bool is_tnf(const F &f)
Definition: ternarize.hpp:28
CUDA constexpr NI bool is_commutative(Sig sig)
Definition: ast.hpp:243
#define UNTYPED
Definition: sort.hpp:21
Definition: simplifier.hpp:122
Definition: simplifier.hpp:154
tell_type(const Alloc &alloc=Alloc())
Definition: simplifier.hpp:158
int num_vars
Definition: simplifier.hpp:155
VarEnv< Alloc > * env
Definition: simplifier.hpp:157
formula_sequence formulas
Definition: simplifier.hpp:156
Definition: simplifier.hpp:13
size_t eliminated_equality_constraints
Definition: simplifier.hpp:15
size_t eliminated_constraints_by_as
Definition: simplifier.hpp:16
CUDA void merge(SimplifierStats &other)
Definition: simplifier.hpp:38
size_t icse_fixpoint_iterations
Definition: simplifier.hpp:18
CUDA void print(StatPrinter &stats)
Definition: simplifier.hpp:30
size_t eliminated_constraints_by_icse
Definition: simplifier.hpp:14
CUDA void print(StatPrinter &stats, size_t fp_iter)
Definition: simplifier.hpp:21
size_t eliminated_entailed_constraints
Definition: simplifier.hpp:17